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1. Introduction
In Finsler geometry, each point on the base manifold can be envisioned as endowed
with a vector of coordinates denoting its position from the origin and a director vec-
tor, also referred to herein as an internal state vector, that may be independent of po-
sition. Geometric objects such as metric tensors, connections, and derived quantities
(torsion, curvature, and so forth) may in turn depend on position and direction or in-
ternal state. This generality is in contrast to classical Riemannian geometry, wherein
the ultimate dependence of such objects is on position alone. Indeed, Finsler geom-
etry encompasses certain geometries of Riemann, Minkowski, and Weyl as special
cases. Its generality has resulted in widespread posited field-theoretical descriptions
in nearly all branches of physics: general relativity,1 gravitation,2 quantum mechan-
ics,3 electrodynamics,4 heat conduction,5 and the mechanics of solids.6 The latter
topic (i.e., continuum mechanics/physics of deformable bodies) is emphasized in
the present report. In this context, fields describing the motion of material particles
comprising a body must be introduced along with evolution of the internal state,
specifically transformations from referential or Lagrangian coordinates and initial
state vectors to spatial or Eulerian coordinates and current state vectors.

Finsler geometry is attributed by name to the doctoral work of P Finsler nearly a
century ago.7 Early fundamental contributions, including the introduction of var-
ious connections, were set forth by Cartan,8 Chern,9 and Rund.10 Modern mono-
graphs include references 11–13. Of particular interest here is reference 14, since
it includes a chapter devoted to applications in finite deformation of solids, albeit
with content limited to kinematics alone. See also the historical review in reference
15—a paper that also advances Finsler geometry via extension of the Cartan-Clifton
method of moving frames—and the recent categorization of Finsler connections in
reference 16.

Applications of Finsler geometry in continuum mechanics and physics of deformable
solids have been suggested, but not fully developed or realized, since the middle of
the 20th century. Amari17 developed what appears to be the first Finsler geometric
theory of deformation of solids, applied specifically to ferromagnetic elastic-plastic
crystals. In this theory, the internal state vector is physically linked to the spin di-
rection of the magnetic moment, and dislocations (a fundamental line defect in
crystalline solids18,19) are associated with a certain torsion tensor related to anholo-
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nomicity20–25 of the locally relaxed intermediate state of the crystal, following ear-
lier classical differential-geometric treatments by Kondo26 and the Japanese school.
Kondo27 briefly discussed possible application of Finsler geometry to describe plas-
tic yielding. Kröner28 and Eringen29 suggested how Finsler geometry may be of
potential use for describing mechanics of solids in the context of generalized con-
tinuum theories such as, for example, reference 30, but did not further develop or
expound on these ideas. Around the same time, Ikeda31,32 developed a theory of de-
formable media with close connections to Finsler space, again restricted to descrip-
tion of kinematics without consideration of energy functionals or equilibrium equa-
tions. Apparently, the application of (pseudo-)Finsler geometry to solid mechanics
remained dormant for some 20 years after these suggestions, until the appearance of
work by Bejancu,14 followed in the next decade by contributions from Saczuk and
colleagues.6,33 (Herein, a space is designated as pseudo-Finslerian14,16 rather than
strictly Finslerian when a fundamental scalar function with requisite properties,11

from which the metric tensor is obtained by differentiation, does not exist.) Theo-
retical developments again remained scarce for 15 years following, apart from some
recent work on anisotropic acoustic wave propagation.34 For a more comprehensive
current literature review, see reference 35.

It is speculated that Finsler geometry, in contrast to Riemannian geometry,36–40 has
heretofore eluded popularity among mechanicians and physicists due to the appar-
ent complexity of calculations, despite its generality and descriptive potential. In-
deed, only one published paper33 containing solutions to a boundary value problem
in Finsler-geometric solid mechanics seems to exist, and these solutions were ob-
tained numerically rather than analytically and only discussed in brief (though the
somewhat obscure monograph41 contains many more details regarding the theory
and problems considered in reference 33). In the absence of solutions to physically
meaningful problems, a complex new theory may offer little advantage or insight
over simpler existing methods.

The purpose of this report is to initiate a new theory of mechanics of deformable
solids with microstructure using concepts from Finsler geometry. Although a few
aspects of the proposed theory are drawn from prior work, notably references 14
and 33, many features are introduced here for the first time. The theory is con-
structed with an aim toward obtaining solutions to pertinent boundary value prob-
lems in mechanics, physics, and materials science. Specifically, problems consid-
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ered herein include tensile fracture of an elastic bar (see, for example, reference
42 for a recent analysis in a different multiscale context), slip localization in an
elastic slab under simple shear (see, for example, reference 43 for a recent anal-
ysis via phase field theory), and cavitation (e.g., void formation and expansion)
in a spherical elastic domain. The fundamental metric tensor entering the theory
in these problems accounts for microscopic dilatation, which is commonplace in
the fracture of crystalline rocks and minerals44–46 as well as in the vicinity of dis-
location cores in crystals.18,47 To reflect such local volume changes, a Weyl-type
rescaling (i.e., a conformal transformation) of the metric tensor is invoked.48,49 In a
novel theory of thermal stresses based on Riemannian geometry, a similar rescaling
of a metric tensor on the material manifold was invoked to study isotropic non-
linear elastic solids.50 Unlike prior theoretical and computational studies in crystal
inelasticity,51–53 the present developments do not require a multiplicative decom-
position of the deformation gradient into 2 (or perhaps more) terms, but such a
treatment is not precluded by the general theory and has been proposed elsewhere
in a merging of continuum phase field and Finsler geometric treatments of defor-
mation twinning in crystals.35 Applications considered herein are also restricted to
initially homogeneous bodies (e.g., single crystals or homogenized polycrystals).
Not considered explicitly are spatially heterogeneous bodies, such as those with
varying elastic moduli51 or varying stress-free strains,54 though the general theory
does not preclude analysis of such problems. Though this report does not apply the
theory toward problems involving phase transitions or twinning, as often studied in
the context of martensite,55 the theory developed herein could be readily applied to
such problems in future work.

This report is organized as follows. Kinematics and geometry pertinent to a new
pseudo-Finsler theory of continuum physics are described in Section 2, including
motions at macro- and microscales, strain metrics, and differential geometric ob-
jects, such as horizontal and vertical connections. An energy functional over the
domain is developed in Section 3, from which Euler-Lagrange equations yield the
conservation laws of static equilibrium for incremental boundary value problems.
Crucial to deriving such equations is an extension of the divergence theorem for-
warded in reference 56. Application of the theory toward problems involving frac-
ture is discussed in Section 4, including the solution of a 1-dimensional (1-D) tensile
decohesion problem. Application toward problems involving slip (e.g., dislocation
glide, adiabatic shear band formation, or mode II separation) is presented in Section

3
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5. Application toward problems involving cavitation is given in Section 6. In the ap-
plications sections, links among geometric objects/parameters entering the theory
and physical concepts are highlighted, and comparisons with predictions of other
classical field approaches are given. Conclusions follow in Section 7.

2. Pseudo-Finsler Geometry and Kinematics
Discussed in turn are aspects of the referential (e.g., initial) configuration of the
material body, the deformed configuration of the material body, and then the trans-
formations (e.g., motions) between the 2 configurations.

2.1 Reference Configuration Geometry
The reference configuration is identified with a particular instant in time at which
a deformable solid body is considered undeformed, following the usual conven-
tion of continuum physics.19 A differential manifold M of spatial dimension 3 is
then physically identified with a deformable solid body embedded in ambient Eu-
clidean 3-space. Let X ∈ M denote a material point or material particle, and let
{XA}(A = 1, 2, 3) denote a coordinate chart that could be assumed, in the inter-
est of brevity, to completely cover M. The body manifold may be taken as simply
connected herein for simplicity, though such an assumption is inessential; in fact,
the theory is later applied to describe breakage, slip, and cavitation processes that
may preclude simple connectivity of the body in one or more conditional states. At-
tached to each point is a vector D, or equivalently, a chart of secondary coordinates
{DA}(A = 1, 2, 3) is assigned that is treated as a field description of microstruc-
ture in the solid and can be associated with a second manifold U of dimension 3.
Herein, D need not be of unit length. Analogoulsy, one may assume for temporary
convenience that U is simply connected and covered by a single chart, though again
this assumption is not essential. Regarding notation, dependence of a function on
(X,D) implies dependence on charts ({XA}, {DA}).

Following the notation of reference 14, the description of the reference state of the
body can be couched in terms of pseudo-Finsler geometry. DefineZ = (Z,Π,M,U)

as a fiber bundle of total (pseudo-Finsler) space Z (dimension 6), where Π : Z→M

is the projection and U the fiber. A chart covering Z is then {X,D}. The natural or
holonomic basis on Z is the field of frames { ∂

∂XA ,
∂

∂DA
}. Coordinate transformations

4
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from {X,D} to another chart {X̃, D̃} are of the Finsler form11

X̃A = X̃A(X1, X2, X3), D̃A(X) = QA
B(X)DB. (1)

LetQA
B = ∂X̃A

∂XB . From the chain rule, holonomic basis vectors on TZ then transform
as11,14

∂

∂X̃A
=
∂XB

∂X̃A

∂

∂XB
+

∂2XB

∂X̃A∂X̃C
D̃C ∂

∂DB
,

∂

∂D̃A
=
∂XB

∂X̃A

∂

∂DB
. (2)

Let NA
B (X,D) denote nonlinear connection coefficients. Nonholonomic basis vec-

tors, which unlike their holonomic counterparts transform as typical vectors, are

δ

δXA
=

∂

∂XA
−NB

A

∂

∂DB
, δDA = dDA +NA

BdX
B. (3)

Noting the scalar products 〈 δ
δXB , dX

A〉 = δAB and 〈 ∂
∂DB

, δDA〉 = δAB , the set
{ δ
δXA ,

∂
∂DA
} serves as a convenient local basis on TZ, and likewise the reciprocal

set {dXA, δDA} for T ∗Z.16 The Sasaki metric tensor invokes the latter:

G(X,D) = GAB(X,D)dXA ⊗ dXB +GAB(X,D)δDA ⊗ δDB. (4)

Components GAB and their inverse components GAB are used to lower and raise
indices in the usual manner, and G(X,D) = det[GAB(X,D)]. Differentiation is
hereafter denoted by the following condensed notation:

∂A(·) =
∂(·)
∂XA

, ∂̄A(·) =
∂(·)
∂DA

; δA(·) =
δ(·)
δXA

= ∂A(·)−NB
A ∂̄B(·). (5)

Christoffel symbols of the second kind for the Levi-Civita connection on M are
derived in the usual way:

γABC = 1
2
GAD(∂CGBD + ∂BGCD − ∂DGBC) = GADγBCD. (6)

Cartan’s tensor in the reference configuration is defined as

CA
BC = 1

2
GAD(∂̄CGBD + ∂̄BGCD − ∂̄DGBC) = GADCBCD. (7)

5
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Horizontal coefficients of the Chern-Rund and Cartan connections are defined as

ΓABC = 1
2
GAD(δCGBD + δBGCD − δDGBC) = GADΓBCD. (8)

Components of the spray and derived nonlinear connection coefficents are, respec-
tively,

GA = 1
2
γABCD

BDC , GA
B = ∂̄BG

A. (9)

Letting ∇ denote the covariant derivative, horizontal gradients of basis vectors are
determined by the generic affine connection coefficients HA

BC and KA
BC :

∇δ/δXB

δ

δXC
= HA

BC

δ

δXA
, ∇δ/δXB

∂

∂DC
= KA

BC

∂

∂DA
. (10)

Vertical gradients are denoted by the generic connection coefficients V A
BC and Y A

BC :

∇∂/∂DB
∂

∂DC
= V A

BC

∂

∂DA
, ∇∂/∂DB

δ

δXC
= Y A

BC

δ

δXA
. (11)

Developments to this point apply for pseudo-Finsler space or Finsler space. The
latter classification holds when a C∞ fundamental scalar function L(X,D) exists
at every point of U \ 0, homogeneous of degree one in D,11 from which the metric
tensor, spray connection coefficients, and Cartan tensor are derived, the latter with
additional symmetry not necessarily present in Eq. 7:

GAB = 1
2
∂̄A∂̄B(L2), CABC = 1

4
∂̄A∂̄B∂̄C(L2);

GA
B = γABCD

C − CA
BCγ

C
DED

DDE = ΓABCD
C .

(12)

Formally, the Chern-Rund connection is defined when Eq. 12 holds and NA
B = GA

B,
HA
BC = KA

BC = ΓABC , and V A
BC = Y A

BC = 0; the Cartan connection is defined when
Eq. 12 holds and NA

B = GA
B, HA

BC = KA
BC = ΓABC , and V A

BC = Y A
BC = CA

BC .16 Let
(·)|C denote horizontal covariant differentiation in a coordinate chart {XC}. Then
when either of these connections is used, the horizontal covariant derivative of the
metric tensor vanishes:

GAB|C = δCGAB − ΓDCAGDB − ΓDCBGDA

= ∂CGAB −ND
C ∂̄DGAB − ΓDCAGDB − ΓDCBGDA = 0.

(13)

A (pseudo)-Finsler space degenerates to a Riemannian space when GAB(X,D)→

6
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GAB(X), and to a locally Minkowskian space when L(X,D)→ L(D).16

Let dX denote a differential line element on M, and let dD denote a corresponding
element on U, both with components referred to the nonholonomic basis. Squared
lengths of these elements with respect to Eq. 4 are

|dX|2 = 〈dX,GdX〉 = GABdXAdXB, |dD|2 = 〈dD,GdD〉 = GABdDAdDB.

(14)
The traditional scalar volume element and the corresponding volume form of M
are56

dV =
√
GdX1dX2dX3, dΩ =

√
GdX1 ∧ dX2 ∧ dX3. (15)

The area form corresponding to a compact region of M is

Ω =
√
BdU1 ∧ dU2. (16)

The embedding of ∂M in M is represented by the local parametric equationsXA =

XA(Uα) (α = 1, 2), BA
α = ∂XA

∂Uα
, and B = det(BA

αGABB
B
β ). See references 57

and 58 for a comprehensive treatment of surfaces in (Riemannian) geometry. The
following identities are also noted:

δA(ln
√
G) = ΓBAB, (

√
G)|A = ∂A(

√
G)−NB

A ∂̄B(
√
G)−

√
GHB

AB. (17)

Stokes’ theorem in terms of a generic C1 differentiable form ααα is∫
M

dααα =

∮
∂M

ααα. (18)

Letααα(X,D) = V A(X,D)Ω(X,D) be a 2-form in Eq. 18, and let V A be contravari-
ant components of vector field V = V A δ

δXA . Let the horizontal connection be such
that the second of Eq. 17 vanishes; for example,HB

AB = ΓBAB → (
√
G)|A = 0. Then

in a coordinate chart {XA}, Eq. 18 becomes56

∫
M

[V A
|A + (V ACC

BC + ∂̄BV
A)DB

;A]dΩ =

∮
∂M

V ANAΩ, (19)

where NA is the unit outward normal to the domain of integration, V A
|A = δAV

A +

V AHB
BA, and DB

;A = ∂AD
B +NB

A .

7
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2.2 Deformed Configuration Geometry
The current configuration is identified with a particular instant in time at which a
solid body is considered deformed. The present discussion fully parallels that of
Section 2.1 but with an adjustment in notation for deformed coordinates and their
indices, which are denoted via lowercase rather than capital fonts. A differential
manifold m of spatial dimension 3 is identified with a deformed solid body em-
bedded in ambient Euclidean 3-space. Let x ∈ m denote a spatial point, and let
{xa}(a = 1, 2, 3) denote a coordinate chart that is assumed to completely cover m,
which may correspondingly be taken, by inessential assumption, for now as simply
connected. Any assumption of simple connectivity will be relaxed later in the con-
text of applications involving discontinuous motions associated with fracture, shear
banding, and cavity formation; in such cases an atlas consisting of multiple charts
may be needed to adequately cover the deformed body. Attached to each point is a
vector d, or equivalently, a chart of secondary coordinates {da}(a = 1, 2, 3) is as-
signed that is treated as a field description of microstructure and can be associated
with a second manifold u of dimension 3. Herein, d need not be of unit length. One
may now likewise assume u is simply connected and covered by a single chart for
simplicity, though the theory developed in this report may be readily applied toward
bodies that are not simply connected.

Again following the notation of reference 14, the deformed state of the body can
be couched in terms of pseudo-Finsler geometry. Define ‡ = (z, π,m, u) as a fiber
bundle of total (pseudo-Finsler) space z (dimension 6), where π : z → m is the
projection and u the fiber. A chart covering z is {x, d}. The natural/holonomic basis
on z is { ∂

∂xa
, ∂
∂da
}. Coordinate transformations from {x, d} to another chart {x̃, d̃}

are
x̃a = x̃a(x1, x2, x3), d̃a(x) = qab (X)db. (20)

Letting qab = ∂x̃a

∂xb
, holonomic basis vectors on T z transform as

∂

∂x̃a
=
∂xb

∂x̃a
∂

∂xb
+

∂2xb

∂x̃a∂x̃c
d̃c

∂

∂db
,

∂

∂d̃a
=
∂xb

∂x̃a
∂

∂db
. (21)

Let nab (x, d) denote nonlinear connection coefficients. Nonholonomic basis vectors
are

δ

δxa
=

∂

∂xa
− nba

∂

∂db
, δda = dda + nabdx

b. (22)

8
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The set { δ
δxa
, ∂
∂da
} serves as a convenient local basis on T z, and {dxa, δda} for T ∗z.

The Sasaki metric tensor in spatial coordinates is

g(x, d) = gab(x, d)dxa ⊗ dxb + gab(x, d)δda ⊗ δdb. (23)

Components gab and inverse components gab are used to lower and raise indices,
and g(x, d) = det[gab(x, d)]. Spatial differentiation is written in condensed form as

∂a(·) =
∂(·)
∂xa

, ∂̄a(·) =
∂(·)
∂da

; δa(·) =
δ(·)
δxa

= ∂a(·)− nba∂̄b(·). (24)

Christoffel symbols of the second kind for the Levi-Civita connection on m are

γabc = 1
2
gad(∂cgbd + ∂bgcd − ∂dgbc) = gadγbcd. (25)

Cartan’s tensor in the current configuration is defined as

Ca
bc = 1

2
gad(∂̄cgbd + ∂̄bgcd − ∂̄dgbc) = gadCbcd. (26)

Horizontal coefficients of the spatial Chern-Rund and Cartan connections are

Γabc = 1
2
gad(δcgbd + δbgcd − δdgbc) = gadΓbcd. (27)

Spatial components of the spray and derived nonlinear connection coefficents are,
respectively,

ga = 1
2
γabcd

bdc, gab = ∂̄bg
a. (28)

Letting ∇ denote the covariant derivative, horizontal gradients of basis vectors are
determined by the generic affine connection coefficients Ha

bc and Ka
bc:

∇δ/δxb
δ

δxc
= Ha

bc

δ

δxa
, ∇δ/δxb

∂

∂dc
= Ka

bc

∂

∂da
. (29)

Vertical gradients are denoted by the generic connection coefficients V a
bc and Y a

bc:

∇∂/∂db
∂

∂dc
= V a

bc

∂

∂da
, ∇∂/∂db

δ

δxc
= Y a

bc

δ

δxa
. (30)

The spatial configuration correlates with Finsler rather than pseudo-Finsler space
when a C∞ fundamental scalar function l(x, d) exists at every point of u \ 0, homo-

9
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geneous of degree one in d, from which

gab = 1
2
∂̄a∂̄b(l

2), gab = γabcd
c − Ca

bcγ
c
ded

dde = Γabcd
c, Cabc = 1

4
∂̄a∂̄b∂̄c(l

2).

(31)
The Chern-Rund connection is invoked when Eq. 31 holds and nab = gab , H

a
bc =

Ka
bc = Γabc, V

a
bc = Y a

bc = 0; the Cartan connection is invoked when Eq. 31 holds and
nab = gab , H

a
bc = Ka

bc = Γabc, V
a
bc = Y a

bc = Ca
bc. Let (·)|c denote horizontal covariant

differentiation in a spatial chart {xc}. Then when either of these connections is
used, the horizontal covariant derivative of g vanishes:

gab|c = δcgab − Γdcagdb − Γdcbgda = ∂cgab − ndc ∂̄dgab − Γdcagdb − Γdcbgda = 0. (32)

A (pseudo)-Finsler space degenerates to a Riemannian space when gab(x, d) →
gab(x), and to a locally Minkowskian space when l(x, d)→ l(d).

Let dx denote a differential line element on m and dd denote a corresponding ele-
ment on u. Squared lengths of these elements with respect to Eq. 23 are

|dx|2 = 〈dx, gdx〉 = gabdxadxb, |dd|2 = 〈dd, gdd〉 = gabddaddb. (33)

The scalar volume element and volume form of m are

dv =
√
gdx1dx2dx3, dω =

√
gdx1 ∧ dx2 ∧ dx3. (34)

By a simple change of notation from referential to spatial quantities, an area form
ω can be introduced analogously to Ω in Eq. 16, as can spatial versions of the
coordinate-free Stokes’ theorem in Eq. 18 and Rund’s horizontal divergence theo-
rem in Eq. 19.

2.3 Deformation Kinematics
Transformations from referential to spatial coordinates (M to m) and vice versa are
denoted by the C2 functions

xa(X,D) = ϕa[X,D(X)], XA(x, d) = ΦA[x, d(x)]. (35)

Since the present theory is quasi-static, time does not enter such functions as an
explicit independent variable. Incorporation of the internal state (D or d) in these

10
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motion functions distinguishes Finsler kinematics14,33 from the usual kinematics in
Riemannian geometry of classical continuum physics.25,59 State vector mappings
are of the affine form

da(X,D) = ϑa[X,D(X)] = ϑaB(X)DB, DA(x, d) = ΘA[x, d(x)] = ΘA
b (x)db.

(36)
The deformation gradient from reference to current (pseudo)-Finsler tangent spaces
is defined as the delta derivative

F(X,D) = F a
A(X,D)

δ

δxa
⊗ dXA =

δϕa(X,D)

δXA

δ

δxa
⊗ dXA =

δx(X,D)

δX
,

F a
A = δAϕ

a = ∂Ax
a −NB

A ∂̄Bx
a.

(37)

The analogous mapping from spatial to referential tangent spaces is the 2-point
tensor

f(x, d) = fAa (x, d)
δ

δXA
⊗ dxa =

δΦA(x, d)

δxa
δ

δXA
⊗ dxa =

δX(x, d)

δx
,

fAa = δaΦ
A = ∂aX

A − nba∂̄bXA.

(38)

Herein, for a 2-point tensor such as F in Eq. 37 and using Eq. 35, define

∂Ax
a[X,D(X)] =

∂xa(X,D)

∂XA
+
∂xa(X,D)

∂DB

∂DB(X)

∂XA
, (39)

with an analogous definition of ∂aXA[x, d(x)] in Eq. 38:

∂aX
A[x, d(x)] =

∂XA(x, d)

∂xa
+
∂XA(x, d)

∂db
∂db(x)

∂xa
. (40)

Transformation equations for differential line elements follow by generalizing fun-
damental postulates of continuum mechanics in Riemannian space25,59 to account
for the nonholonomic bases of Finsler space, whereby partial coordinate derivatives
are replaced with delta-derivatives:

dx =
δx
δX

dX ⇔ dxa = F a
AdXA, dX =

δX
δx

dx⇔ dXA = fAa dxa. (41)

It follows that volume elements and volume forms transform between reference and

11
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spatial frames as

dv = JdV = [det(F a
A)
√
g/G]dV, dω = JdΩ;

dV = jdv = [det(fAa )
√
G/g]dv, dΩ = jdω.

(42)

Lengths of deformed and initial line elements can be compared using the deforma-
tion tensor C:

|dx|2 = F a
AF

b
BgabdX

AdXB = CABdXAdXB = 〈dX,CdX〉, (43)

where
C = CABdX

A ⊗ dXB = F a
AgabF

b
BdX

A ⊗ dXB. (44)

It follows that det(CAB) = J2G. For the directors or state vectors, a similar con-
struction using Eq. 36 gives

|d|2 = ϑaϑa = ΞABD
ADB = 〈D,ΞΞΞD〉, (45)

with
ΞΞΞ = ΞABδD

A ⊗ δDB = ϑaAgabϑ
b
BδD

A ⊗ δDB. (46)

A transformation rule for gradients of nonholonomic bases is obtained from defini-
tions Eq. 29 and Eq. 37:

∇δ/δXA

δ

δxc
=

δxa

δXA
∇δ/δxa

δ

δxc
= F a

A∇δ/δxa
δ

δxc
= F a

AH
b
ac

δ

δxb
. (47)

This transformation, which is used later in the total covariant derivative operation25

extended here to 2-point tensors in Finsler space, provides further motivation for the
presently proposed definition of the deformation gradient F as a delta-derivative.

3. Energy Functional and Conservation Laws
The following variational principle is set forth, where Ψ is the action integral for a
closed and simply connected region of M with boundary ∂M, and surface forces
are p = padx

a, a mechanical load vector (force per unit reference area), and z =

zAδD
A, a thermodynamic force conjugate to the internal state vector:

δΨ(ϕϕϕ,D) =

∮
∂M

(〈p, δx〉+ 〈z, δD〉)Ω. (48)

12
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Letting ψ denote potential energy density (i.e., internal or free energy density in the
absence of kinetic and thermal effects), this becomes

δ

∫
M

ψdΩ =

∮
∂M

[paδx
a + zAδ(D

A)]Ω, (49)

where the first variation of D is enclosed in parentheses to avoid confusion with
basis vector δDA. The following functional form of the energy density per unit
reference volume on M is assumed:

ψ = ψ(F,D,∇D,G) = ψ(F a
A, D

A, DA
|B, GAB). (50)

This form of the energy density is motivated by phase field theory,43,60 whereby
the internal state vector D is treated here analogously to an order parameter. Fur-
ther motivation is obtained from continuum mechanical models of liquid crystals,
wherein director vector gradients may enter the thermodynamic potentials.61 Later
in Sections 4, 5, and 6, a more precise physical meaning will be assigned to the in-
ternal state vector in the context of example problems. Thermodynamic forces are
introduced by taking the first variation of Eq. 50:

δψ =
∂ψ

∂F a
A

δF a
A +

∂ψ

∂DA
δ(DA) +

∂ψ

∂DA
|B
δDA
|B +

∂ψ

∂GAB

δGAB

= PA
a δF

a
A +QAδ(D

A) + ZB
A δD

A
|B + SABδGAB.

(51)

Imposition of spatial coordinate invariance leads to the restricted form

ψ = ψ[C(F, g),D,∇D,G] = ψ(CAB, D
A, DA

|B, GAB), (52)

from which the first Piola-Kirchhoff stress PA
a and Cauchy stress σab obey

PA
a = 2gabF

b
B

∂ψ

∂CAB
, σab = jgacPA

c F
b
A = 2jF a

AF
b
B

∂ψ

∂CAB
= σba. (53)

Symmetry of Cauchy stress is consistent with the balance of angular momentum of
classical continuum mechanics.19,59

Noting that variation δ(·) is performed with X fixed but D variable,

δF a
A = δA(δϕa)− ∂̄Bϕa∂̄CNB

A δ(D
C), (54)

13
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δDA
|B = [δ(DA)]|B − (∂̄CN

A
B − ∂̄CKA

BDD
D)δ(DC), (55)

δ(dΩ) = GAB∂̄CGABδ(D
C)dΩ. (56)

Substituting Eq. 51 and Eq. 54–Eq. 56 into the left side of Eq. 49 gives

δ

∫
M

ψdΩ =

∫
M

{PA
a δA(δϕa) + ZB

A [δ(DA)]|B

+ [QC − PA
a ∂̄Bϕ

a∂̄CN
B
A − ZB

A (∂̄CN
A
B − ∂̄CKA

BDD
D)

+ (SAB + ψGAB)∂̄CGAB]δ(DC)}dΩ.

(57)

Two applications of the divergence theorem Eq. 19 and repeated integration by parts
then gives the following equivalent integral form of Eq. 49:

−
∫
M

{[PA
a|A + (PA

a C
C
BC + ∂̄BP

A
a )DB

;A]δϕa + [QC − ZB
C|B

− (ZA
CC

D
BD + ∂̄BZ

A
C )DB

;A − ZB
A (∂̄CN

A
B − ∂̄CKA

BDD
D)

− PA
a (∂̄B∂̄Cϕ

aDB
;A + ∂̄Bϕ

a∂̄CN
B
A ) + (SAB + ψGAB)∂̄CGAB]δ(DC)}dΩ

+

∮
∂M

[PA
a NAδϕ

a + ZB
ANBδ(D

A)]Ω =

∮
∂M

[paδϕ
a + zAδ(D

A)]Ω.

(58)

Assuming this global equation must hold for admissible variations δx and δD, local
results from Eq. 58 are the Euler-Lagrange equations (i.e., force balances) and the
Neumann boundary conditions:

∂AP
A
a +PB

a H
A
AB−PA

c H
c
baF

b
A+PA

a N
B
AC

C
BC +(PA

a C
C
BC + ∂̄BP

A
a )∂AD

B = 0, (59)

∂AZ
A
C + ZB

CH
A
AB − ZA

BH
B
AC + ∂̄BZ

A
C∂AD

B

+ ZB
A (∂̄CN

A
B − ∂̄CKA

BDD
D + δACC

D
EDD

E
;B)

+ PA
a (∂̄B∂̄Cϕ

aDB
;A + ∂̄Bϕ

a∂̄CN
B
A )− (SAB + ψGAB)∂̄CGAB = QC ;

(60)

pa = PA
a NA, zA = ZB

ANB. (61)

Note that Eq. 47 has been used in Eq. 59 for determining the (total) horizontal
covariant derivative of the 2-point tensor P = PA

a dx
a ⊗ δ

δXA . Equation 59 is the
(local) balance of linear momentum for quasi-statics. Equation 60 will be referred
to as the (local) balance of director momentum or micromomentum.

Balance Eqs. 59 and 60 reduce as follows when configuration spaces are (pseudo)-

14
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Riemannian (G independent of D):

∂AP
A
a + PB

a γ
A
AB − PA

c γ
c
ba∂Aϕ

b + ∂̄BP
A
a ∂AD

B = 0, (62)

∂AZ
A
C + ZB

C γ
A
AB − ZA

Bγ
B
AC + ∂̄BZ

A
C∂AD

B + PA
a ∂̄B∂̄Cϕ

a∂AD
B = QC ; (63)

(pseudo)-Minkowskian (G independent of X and g independent of x):

∂AP
A
a + (PA

a C
C
BC + ∂̄BP

A
a )∂AD

B = 0, (64)

∂AZ
A
C + ∂̄BZ

A
C∂AD

B + ZB
CC

D
AD∂BD

A + PA
a ∂̄B∂̄Cϕ

a∂AD
B

− (SAB + ψGAB)∂̄CGAB = QC ;
(65)

and Cartesian (global metrics GAB = δAB and gab = δab):

∂AP
A
a + ∂̄BP

A
a ∂AD

B = 0, (66)

∂AZ
A
C + ∂̄BZ

A
C∂AD

B + PA
a ∂̄B∂̄Cϕ

a∂AD
B = QC . (67)

The model framework is complete upon prescription of the following details. For
pseudo-Finsler reference space, a metric tensor G is introduced over the domain of
interest in Z, from which all connection coefficients are derived via differentiation
using relations listed in Section 2.1. In this regard, nonlinear coefficients can be
determined from the spray in Eq. 9, and particular forms for horizontal and vertical
connection coefficients in Eqs. 10 and 11 must be prescribed (i.e., those correspond-
ing the Chern-Rund connection or Cartan’s connection). The main requirement for
selection of horizontal coefficients is that (

√
G)|A must vanish for the form of di-

vergence theorem in Eq. 19 to apply; this is true for Chern-Rund and Cartan con-
nections. Anaolgous choices must be prescribed for the current configuration space,
including specification of metric tensor g, from which connection coefficients are
derived via equations in Section 2.2. Note that the same forms of metric and con-
nections need not be prescribed in both configurations; that is, the reference space
could be taken as Finslerian and the current configuration space Riemannian, or
vice-versa. Regarding deformation kinematics of Section 2.3, a constitutive equa-
tion may be added for specification of transformation matrix ϑaB in Eq. 36, but this
is not essential for the solution of all boundary value problems. For crystals, a con-
venient assumption is the Cauchy-Born rule,62,63 whereby ϑaA(X) = F a

A[X,D(X)]
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in a consistent coordinate basis. A particular form of free energy function ψ in Eq.
50 physically appropriate for the material of interest must also be invoked. Then,
given prescribed boundary conditions on ∂M, governing Eqs. 59 and 60 represent,
in principle, 6 coupled nonlinear partial differential equations for 6 unknown fields
ϕa[X,D(X)] and DA(X). If Finsler geometry rather than pseudo-Finsler geometry
is presumed, then a fundamental scalar function L is introduced that provides G by
differentiation via Eq. 12 rather than direct prescription, and similarly for l and g
via Eq. 31.

A few major differences from prior literature are noted. Specifically, the new defi-
nition used herein for the deformation gradient (2-point) tensor in Eq. 37—a delta-
derivative—differs from that in reference 12—a partial derivative—and that in ref-
erences 33 and 41—a covariant derivative—and can be interpreted as a compromise
between the other latter; this compromise further enables computation of Eq. 47.
Certain choices or options for metric tensors and connection coefficients also vary
among the present work and these prior works, and the form of free energy function
in Eq. 50 differs from that proposed in references 33 and 41.

4. Physics of Fracture
The first of 3 boundary value problems is considered in the present section. By
construction, these problems involve fields that could vary in only 1 or 2 rather
than all 3 spatial directions. Two strategies are possible for formulating the pseudo-
Finsler theory to solve such problems: either define a general 3-D theory and then
reduce the equations appropriately for the problem geometry, or construct a theory
of reduced dimensionality from the outset. The latter approach is taken in Section
4 to obtain physical insight while maintaining mathematical simplicity.

4.1 Problem Geometry and Kinematics
Considered first is perhaps the simplest physically meaningful application of the
theory. The material body is a straight 1-D bar of length L0, and the material man-
ifold is specified as {M : X ∈ [0, L0]}. By construction, fields vary only with
X = X1 and D = D1, and coordinates X2, X3, D2, D3 are superfluous. A Carte-
sian coordinate system suffices for {X}, so there is no need to assign a metric
tensor with dependence on X . Consistent with these protocols, the following rela-
tions, which are reductions of more general definitions and identities of Section 2.1,
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apply:

X = X1, D = D1; G = G11(D), G11(D) = 1/G(D); (68)

γ111 = 1
2
∂1G = 0, γ1

11 = 0; G1 = 1
2
γ1

11D
1D1 = 0, N1

1 = ∂̄1G
1 = 0; (69)

C111 = 1
2
∂̄1G = G′/2, C1

11 = G′/(2G). (70)

The reference configuration space is locally Minkowskian. Invoking the Chern-
Rund connection with vanishing nonlinear connection coefficients from Eq. 69,

H1
11 = K1

11 = Γ1
11 = 1

2G
δ1G = 0; V 1

11 = Y 1
11 = 0. (71)

For the current/deformed configuration of the bar, with deformed material manifold
{m : x ∈ [0, L]} , with L the deformed length of the domain, spatial coordinates
and metric components are of the assumed Cartesian form

x = x1, d = d1; g = g11 = 1, g11 = 1/g = 1. (72)

All spatial connection coefficients of Section 2.2—linear and nonlinear—then van-
ish identically.

Motions, deformations, and director gradients defined in Section 2.3 reduce as fol-
lows for the current 1-D problem:

x = ϕ(X,D), d = ϑ(X,D); D = D(X); (73)

F (X,D) = F 1
1 (X,D) = δ1x

1(X,D) =
∂ϕ(X,D)

∂X
+
∂ϕ(X,D)

∂D

∂D(X)

∂X
; (74)

J(X,D) =
√
g/G(D)F 1

1 (X,D) = [G(D)]−1/2[F (X,D)]; (75)

C(X,D) = C11(X,D) = F 1
1 (X,D)g11F

1
1 (X,D) = [F (X,D)]2; (76)

D1
|1 = ∂1D −N1

1 +K1
11D = ∂D/∂X = D′. (77)

The internal state variable D is physically identified with crack opening displace-
ment. Define a total strain measure ε (which includes a microdeformation gradient
contribution) and a lattice strain measure a associated with stored elastic energy as,
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respectively,

ε =
√
C − 1 = F − 1; a = ε−D′ = ε− ∂D

∂X
=

∂

∂X
(x−X −D). (78)

Stretch occurs for ε > 0, contraction for ε < 0. Also introduce a constant l with
dimensions of length and a normalized order parameter ξ:

ξ = D/l, ξ′ = D′/l; a = ε− lξ′. (79)

Constant l will later be identified as the value of crack opening displacement at
which the bar supports no tensile load. Letting k denote a constant depending on
the material of interest, a more specific form of the Minkowski metric in Eq. 68 is
introduced as

G(ξ) = exp(2kξ)⇒ G′/(2G) = C1
11 = k/l. (80)

The length of a referential line element in Eq. 14 and the corresponding volume
form in Eq. 15 become

|dX|2 = dX ·G · dX = exp(2kD/l)dX · dX, dΩ =
√
GdX = exp(kD/l)dX,

(81)
such that expansion occurs when k > 0 and contraction when k < 0 if ξ > 0. The
former case is physically representative of microscopic dilatation from cracking in
crystalline rocks, for example44,46 as well as dilatation from core fields of disloca-
tions18,39,47 that may emerge in the vicinity of crack tips in more ductile crystals.
Volume changes due to thermal expansion or contraction might also be represented
via such a description. Because G is not homogeneous of degree zero in D, the ref-
erence configuration space is not strictly of Finsler character, but rather is labeled a
pseudo-Finsler space.16 Furthermore, because G does not depend explicitly on X ,
this space may be categorized as pseudo-Minkowskian.

4.2 Energy, Thermodynamic Forces, and Balance Laws
Application of results derived in Section 4.1 leads to the following forms of Eqs. 50
and 52 for the present 1-D example:

ψ = ψ(C,D, ∂D/∂X,G) = ψ(F,D, ∂D/∂X,G) = ψ(ε,D, ∂D/∂X,G). (82)
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Written in terms of lattice strain and normalized order parameter, this becomes

ψ = ψ[a(ε, ξ′), ξ, ξ′, G(ξ)]. (83)

Motivated again by phase field theory,43,60 the following sum of quadratic forms is
invoked:

ψ = 1
2
Λ(1− ξ)2a2 + Υξ2/l + Υl(ξ′)2. (84)

Material constants are defined as follows: Λ = λ + 2µ is the longitudinal elastic
stiffness, Υ is the crack surface energy per unit reference area, and regularization
length l has been introduced already in Eq. 79. The first term on the right side of Eq.
84 accounts for elastic strain energy degraded by damage associated with ξ ∈ [0, 1],
and the other 2 terms combine to account for the surface energy of fracture. This
energy function contains no explicit dependence on G.

Nonzero thermodynamic forces of Section 3 are then obtained by direct calculation
as

P = P 1
1 =

∂ψ

∂ε
=
∂ψ

∂a

∂a(ε, ξ′)

∂ε
= Λ(1− ξ)2a; (85)

Q = Q1 =
∂ψ

∂D
=

1

l

∂ψ

∂ξ
= −Λ

l
(1− ξ)a2 + 2

Υ

l2
ξ = − Pa

l(1− ξ)
+ 2

Υ

l2
ξ; (86)

Z = Z1
1 =

∂ψ

∂D′
=

1

l

∂ψ

∂ξ′
= 2Υξ′ +

1

l

∂ψ

∂a

∂a

∂ξ′
= 2Υξ′ − Λ(1− ξ)2a = 2Υξ′ − P.

(87)
The linear momentum balance in Eqs. 59 and 64 becomes

∂P (X,D)

∂X
+
∂P (X,D)

∂D

∂D

∂X
+ P

G′(D)

2G(D)

∂D

∂X
=

dP
dX

+ P
G′

2G

dD
dX

= 0. (88)

The micromomentum balance in Eqs. 60 and 65 becomes

∂Z(X,D)

∂X
+

[
∂Z(X,D)

∂D
+ Z

G′(D)

2G(D)
+ P

∂2ϕ(X,D)

∂D2

]
∂D

∂X

− G′(D)

G(D)
ψ(X,D) = Q(X,D).

(89)

Substituting from Eqs. 80 and 85–87, these balance laws become

dP
dX

= −kP dξ
dX

; P

[
a

1− ξ
+
∂2ϕ

∂ξ2
ξ′
]

+ 2Υlξ′′ − 2
Υ

l
ξ = 2k[ψ −Υl(ξ′)2].

(90)
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Relations in Eq. 90 constitute a pair of coupled nonlinear ordinary differential equa-
tions wherein field variables P , a, ξ, ϕ, and ψ depend ultimately on the independent
variable X .

4.3 Problem Solutions: Riemannian Geometry
Considered first is the simple case wherein the referential configuration space is
Riemannian (in fact, a Cartesian structure), with k = 0→ G = 1 = constant. Even
though the space is Cartesian, the kinematics are still of Finsler character since ϕ
can potentially depend on bothD andX rather than justX as in classical continuum
physics. Balance laws in Eq. 90 degenerate to

dP
dX

= 0; P

[
a

1− ξ
+
∂2ϕ

∂ξ2
ξ′
]

+ 2Υlξ′′ − 2
Υ

l
ξ = 0. (91)

The first of Eq. 91 results immediately in constant stress over the length of the bar:

P = P0 = Λ(1− ξ)2a = constant. (92)

The solution of the second requires further specification of boundary conditions.
Two particular problems corresponding to 2 different sets of boundary conditions
are addressed next: homogeneous damage of the deformed bar over [0, L] (i.e., mi-
croscopic fractures evenly distributed along the length of the bar) and localized
damage corresponding to a globally stress-free deformed state (i.e., complete ten-
sile fracture/rupture of the bar).

4.3.1 Homogeneous Damage
For homogeneous damage, ξ′(X) = 0∀X ∈ [0, L0] ⇒ ξ(0) = ξ(L0) = ξH .
Boundary conditions on displacement are prescribed as follows:

ϕ(0, D) = ϕ0 = D = lξH , ϕ(L0, D) = ϕL = (1 + aH)L0 + lξH . (93)

Here, ϕL is the prescribed coordinate of the deformed bar at x = L, with aH and
ξH constants. Equations 91 and 92 result in

P0 = Λ(1− ξH)2aH , ξH = 1/[1 + 2Υ/(Λla2
H)]. (94)

Given ϕL, the second of Eq. 93 and Eq. 94 can be solved simultaneously for the
homogeneous damage field ξH , stress P0, and stretch aH . The problem kinematics
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are consistent with the separable decomposition of the motion ϕ into

ϕ[X, ξ(D)] = χ(X) + lξ(D), F = ∂ϕ/∂X = χ′, (95)

where for homogeneous damage and strain fields,

ϕ[X, ξH ] = (1 + aH)X + lξH , χ = (1 + aH)X, F = 1 + aH . (96)

The total energy of the degraded elastic bar is obtained as

Ψ(ϕL, ξH) = ΨH =

∫ L0

0

[Λ(1− ξH)2a2
H/2 + Υξ2

H/l]dX

= [Λ(1− ξH)2a2
H/2 + Υξ2

H/l]L0.

(97)

Remark: Letting ϕ(X,D) → ϕ(X) = χ(X) and modifying Eq. 93 to ϕ0 =

0, ϕL = (1 + aH)L0 recovers a description analogous to that of phase field the-
ories of fracture mechanics.43,64

4.3.2 Stress-Free State
For a stress-free state, P = P0 = 0∀X ∈ [0, L0]. Boundary conditions on the
order parameter ξ(X) or internal state variable representing microdisplacement are
prescribed as follows:

ξ(0) = D(0)/l = 1, ξ(L0) = 0. (98)

The second of the governing equations in Eq. 91 becomes the homogeneous linear
second-order ordinary differential equation and corresponding exact solution

ξ′′ − ξ/l2 = 0⇒ ξ(X) =
exp(−X/l)

1− exp(2L0/l)
[exp(2X/l)− exp(2L0/l)]. (99)

The null stress condition results in a(X) = 0∀ξ(X) 6= 1; since lattice stretch a(X)

and ϕ0 = ϕ(0, D) are indeterminate where ξ = 1, the total displacement at the
undamaged end of the bar, ϕL, is also indeterminate. Physically, this corresponds to
rigidly displacing the bar, once disconnected from its fully fractured site at X = 0,
without altering its internal energy. Total energy is the integral

Ψ(ξ) = ΨF =

∫ L0

0

Υ[(ξ′)2l + ξ2/l]dX. (100)
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Remark: Equation 99 contains an equation and associated solution identical to that
attainable through phase field theories of fracture mechanics.43,64

4.4 Problem Solutions: Minkowskian Geometry
Considered now is the more general case wherein the referential configuration space
is pseudo-Finslerian (specifically, a locally Minkowskian structure) with k 6= 0 in
Eq. 80. Even though the referential metric is pseudo-Minkowskian, deformation
kinematics are again of Finsler nature since x = ϕ(X,D) can potentially depend
on D as well as X . Balance laws in Eq. 90 apply; the first results in

dP/P = −kdξ ⇒ P = P0 exp(−kξ), (101)

where P0 is the constant stress corresponding to k = 0 and/or ξ = 0. The solution of
the second balance law again requires further specification of boundary conditions.
The same 2 problems considered in Sections 4.3.1 and 4.3.2 are now revisited in the
context of the pseudo-Minkowski metric in Eq. 80, recalling that k > 0 accounts
for additional microscopic stretch and dilatation in the damaged zone neglected in
the Riemannian metrical representation of Section 4.3.

4.4.1 Homogeneous Damage
For homogeneous damage, ξ′(X) = 0∀X ∈ [0, L0] ⇒ ξ(0) = ξ(L0) = ξH .
Boundary conditions on displacement are identical to Eq. 93:

ϕ(0, D) = ϕ0 = D = lξH , ϕ(L0, D) = ϕL = (1 + aH)L0 + lξH . (102)

Equations 90 and 101 result in

P = PH = P0 exp(−kξH) = Λ(1− ξH)2aH = constant,

Λa2
H(1− ξH)− 2(Υ/l)ξH = 2kψ(aH , ξH).

(103)

Given ϕL, Eqs. 102 and 103 can be solved simultaneously for the homogeneous
damage field ξH , stress P0, and stretch aH . The problem kinematics are consistent
with the separable decomposition of Eqs. 95 and 96. The total energy of the elastic

22



Approved for public release; distribution is unlimited.

bar is obtained as

Ψ(ϕL, ξH) = ΨH =

∫ L0

0

[Λ(1− ξH)2a2
H/2 + Υξ2

H/l]dX

= [Λ(1− ξH)2a2
H/2 + Υξ2

H/l]L0,

(104)

identical in form to Eq. 97 but with potentially different values of ξH and aH for a
prescribed ϕL when k is nonzero.

Shown in Fig. 1 are ξ = ξH , P = PH , and Ψ = ΨH versus applied tensile displace-
ment, computed via Eqs. 103 and 104. Representative material parameters are taken
as λ = µ = Λ/3 = 1011N/m2, Υ = 1N/m, and l = 10−9m.43,60 The domain size is
L0 = 103l, and the Weyl scaling parameter k is varied from 0 to ln 2, with the latter
(maximum considered) value corresponding to a maximum volume form scaling of√
G = 2 at ξH = 1. Since resulting volume changes are considerably large, the

Weyl scaling could be interpreted as giving rise to a fictitious damaged configura-
tion, similar to that envisioned in nonlinear continuum damage mechanics.65 For
any fixed value of k, the order parameter ξ increases monotonically with increasing
tensile displacement (Fig. 1a), tensile stress P increases to a maximum and then de-
creases (Fig. 1b), and energy Ψ increases monotonically (Fig. 1c). As k increases,
the value of ξ tends to decrease for 0 < (ϕL/L0 − 1) < 0.5, while P and Ψ tend to
increase over the same range of displacement. Notably, as evident from Fig. 1b, the
peak stress and the applied displacement at which the peak stress is reached both
increase significantly with increasing k, implying an increase in tensile strength and
stability of the material commensurate with microscopic dilatation represented by
positive values of k. The increases in stress and energy correlate with a decrease
in order parameter since both P and strain energy density contain a multiplication
factor of (1 − ξ)2. The contribution of the lξH term in Eq. 96 is negligible since
l/L0 � 1; therefore, differences between the present Finsler solution with k = 0

and phase field theory43,64 are also negligible.
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(a) (b)

(c)

Fig. 1 Tensile deformation, homogeneous-state solutions, l/L0 = 10−3: (a) order parameter
ξ = D/l, (b) normalized tensile stress, and (c) normalized total energy

4.4.2 Stress-Free State
As in Section 4.3.2, for a stress-free state P = 0∀X ∈ [0, L0]. Boundary conditions
on the order parameter ξ(X) are prescribed as in Eq. 98:

ξ(0) = D(0)/l = 1, ξ(L0) = 0. (105)

The second of governing equations in Eq. 90, with Eq. 84, becomes the nonlinear
second-order ordinary differential equation

ξ′′ − ξ/l2 + k[(ξ′)2 − ψ/(Υl)] = 0⇒ ξ′′ = (ξ/l2)(1 + kξ). (106)
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Defining ζ = ξ′ such that ξ′′ = ζ · dζ/dξ, this can be transformed into the nonho-
mogeneous first-order differential equation and corresponding general solution

ζdζ = (ξ/l2)(1 + kξ)dξ ⇒ ζ = ±(ξ/l)
√

1 + 2kξ2/3 + c1/ξ2. (107)

In this case, integration constant c1 vanishes and the negative root applies. The
second of Eq. 107 can be integrated to give the following implicit solution for ξ(X),
which is then evaluated via numerical quadrature:

dξ = −(ξ/l)
√

1 + 2kξ2/3 dX ⇒ X(ξ) =

∫ ξ

1

−ldα
α
√

1 + 2kα2/3
. (108)

The null stress condition again results in a(X) = 0∀ξ(X) 6= 1 so that ϕ0 and ϕL
remain indeterminate. Total energy is the integral

Ψ(ξ) = ΨF =

∫ L0

0

Υ[(ξ′)2l + ξ2/l]dX. (109)

The total energy per unit cross-sectional area of the bar computed via Eq. 109 is
shown in column 2 of Table 1, where L0 = 1 for normalization. This energy ΨF

increases slightly with increasing k, with the k = 0 solution identical to the stress-
free solution from phase field theory.43,64 A value of ΨF/L

2
0 = Υ corresponds to

Griffith’s theory of mode I brittle fracture, recalling that material property Υ is
surface energy. Shown in Fig. 2 are profiles of ξ computed via Eq. 108, with a
domain size of L0 = 10l and the same range of Weyl scaling factor k considered in
Section 4.4.1. Regardless of k, the value of ξ drops off rapidly from its maximum at
X = 0 with increasing X . Increasing k results in a small decrease in ξ for X < L0,
and an increase in |ξ′| (i.e., a sharper fracture profile).

Table 1 Stress-free 1-D solutions for l/L0 = 0.1: total energy

Weyl Scaling Factor Tension/Shear: ΨF /(ΥL
2
0)

k = 0 1.0091
k = ln 5

4 1.0100
k = ln 3

2 1.0117
k = ln 7

4 1.0138
k = ln 2 1.0159
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(a) (b)

Fig. 2 Axial or shear stress-free solutions, l/L0 = 0.1: (a) ξ: 0 ≤ X ≤ L0 and (b) ξ: 0 ≤ X ≤
0.1L0

5. Physics of Slip
The second of 3 boundary value problems is considered in this section, involving
simple shearing of a 2-D nonlinear elastic slab. Herein, a general free energy func-
tion is postulated, applicable for any 3-D deformation modes, and then specified to
the present geometry and kinematics.

5.1 Problem Geometry and Kinematics
The material body is an elastic slab of length L0 and infinite width and thickness. In
2 dimensions, the material manifold is specified as {M : X1 ∈ [0, L0], |X2| ∈ ∞}.
Regarding the third (out-of-plane) direction, plane strain conditions are imposed.
The internal state vector is restricted as {DA} → {0, D2, 0}. By construction, fields
vary only with X = X1 and D = D2, and coordinates X3, D1, D3 are superflu-
ous. A Cartesian coordinate system suffices for {X} so metric tensor G contains
no dependence on X . Consistent with these protocols, the following reductions of
definitions and identities of Section 2.1 hold:

{X, Y } = {X1, X2}, D = D2; (110)

G(D) =

[
G11(D) G12(D)

G12(D) G22(D)

]
, G = G11G22 −G2

12; (111)
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γABC = 1
2
(∂AGBC +∂BGAC−∂CGAB) = 0, GA = 1

2
γABCD

BDC = 0; (112)

NA
B = ∂̄BG

A = 0⇒ δA(·) = ∂A(·); (113)

C111 =C122 = C212 = 0, C222 = G′22/2, C112 = −G′11/2,

C121 = C211 = G′11/2, C221 = G′12.
(114)

The reference configuration space is locally Minkowskian. Invoking the Chern-
Rund connection with vanishing nonlinear connection coefficients from Eq. 112,

HA
BC = KA

BC = ΓABC = 1
2
GAD(δCGBD + δBGCD − δDGBC) = 0;

V A
BC = Y A

BC = 0.
(115)

For the current/deformed configuration of the slab, with deformed material mani-
fold {m : x1 ∈ [0, L], |x2| ∈ ∞}, where L is the deformed length of the domain,
spatial coordinates and metric components are of the Cartesian form

{x, y} = {x1, x2}, d = d2; gab = δab, g = 1. (116)

All spatial connection coefficients of Section 2.2—linear and nonlinear—then van-
ish identically.

Motions, deformations, and director gradients defined in Section 2.3 reduce as fol-
lows under simple shear, with ϕ = υ + Y and ε denoting deformation and strain in
the shearing (Y ) direction:

x = X, y = ϕ(X, Y,D) = Y+υ(X,D); d = ϑ(X,D); D = D(X); (117)

F(X,D) =

[
∂x(X)
∂X

∂x(X)
∂Y

∂ϕ(X,Y,D)
∂X

+ ∂ϕ(X,Y,D)
∂X

∂D(X)
∂X

∂ϕ(X,Y,D)
∂Y

]

=

[
1 0

dυ[X,D(X)]
dX 1

]
=

[
1 0

ε(X,D) 1

]
;

(118)

J(X,D) =
√
g/G(D)F 1

1 (X,D)F 2
2 (X,D) = [G(D)]−1/2 = J(D); (119)

C11 = 1 + ε2, C12 = C21 = ε, C22 = 1; det C = 1; (120)

D2
|1 = ∂1D −N2

1 +K2
12D = ∂D/∂X = D′. (121)
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The internal state variable D is physically identified with a slip discontinuity or
slipped displacement. The defect associated with D could be a shear band in a
(poly)crystalline metal,66 a stacking fault in a crystal lattice,19 or a mode II crack in
a brittle solid.43 It becomes useful to define a lattice shear strain measure a, defor-
mation gradient F̄, deformation tensor C̄, and Jacobian determinant J̄ as follows:

a = ε±D′ = ∂

∂X
(y − Y ±D), F̄(X,D,D′) =

[
1 0

a(X,D,D′) 1

]
; (122)

C̄11 = 1 + a2, C̄12 = C̄21 = a, C̄22 = 1; J̄ =
√

det(C̄AB). (123)

As in Section 4, introduced are a constant l with dimensions of length and a nor-
malized order parameter ξ ∈ [0, 1]:

ξ = D/l, ξ′ = D′/l; a = ε± lξ′. (124)

Constant l will be identified as the value of shear slip-displacement at which the slab
supports no shear stress. Letting k denote a constant depending on the material, a
more specific form of the Minkowski metric in Eq. 110 is invoked:

G(D) =

[√
G(D) 0

0
√
G(D)

]
; G(ξ) = exp(2kξ)⇒ G′

2G
=
G′11

G11

=
G′22

G22

=
k

l
.

(125)
This can be viewed as a Weyl transformation or Weyl rescaling48 of the Cartesian
metric δAB. Also used later is the second component of the trace of Cartan’s tensor
of Eq. 114:

CA
2A = GABC2AB = 1

2
(G11G′11 +G22G′22 + 4G12G′12) = k/l. (126)

The length of a referential line element in Eq. 14 and the corresponding volume
form in Eq. 15 become

|dX|2 = exp

(
kD

l

)
(dX · dX + dY · dY ), dΩ = exp

(
kD

l

)
dX ∧ dY. (127)

For ξ > 0, expansion occurs when k > 0 and contraction when k < 0. Physical
justification follows similar arguments as given in Section 4.1: shear fractures may
result in dilatation as rough crack faces slide over one another,67 while (full) dis-
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locations or partial dislocations associated with shear bands or stacking faults may
result in local dilatation due to nonlinear elastic and core effects.68–70 Because G
is not homogeneous of degree zero in D, the reference configuration space is not
strictly of Finsler character, but is a pseudo-Finsler space,16 and becauseG does not
depend on X , this space may be further categorized as pseudo-Minkowskian.

5.2 Energy, Thermodynamic Forces, and Balance Laws
For a compressible neo-Hookean elastic solid with strain energy function W de-
pending on lattice deformation tensor C̄, the following general form of total free
energy density in Eq. 52 is assumed:

ψ(CAB, D
A, DA

|B, GAB) = W [C̄AB(CAB, D
A
|B), DA] + f [DA, DA

|B, GAB], (128)

where function f accounts for surface energy. Specifically, extending prior phase
field theory43 to Finsler-geometric continuum mechanics, let µ and λ denote the
usual isotropic elastic constants and

W = [1
2
µ(C̄ABδ

AB − 3)− µ ln J̄ + 1
2
λ(ln J̄)2](1− ξ)2, (129)

f = (Υ/l)(DADBδAB/l
2 +DA

|BδACδ
BDDC

|D). (130)

A stress tensor P̄ associated with W is

P̄A
a =

∂ψ

∂F̄ a
A

=
∂W

∂F̄ a
A

= [µF̄ b
Bδabδ

AB + (λ ln J̄ − µ)F̄−1A
a ](1− ξ)2. (131)

For the present case of simple shear with Eqs. 120 and 123 now applied,

∂{F̄ a
A[a(ε,D′)]}/∂F b

B = (∂a/∂ε)δab δ
A
B = δab δ

A
B ⇒ PA

a = P̄A
a . (132)

This identity, with F̄ 2
1 = −(F̄−1)1

2 = a and J̄ = 1 in Eq. 131, results in the only
nonzero stress components

P = P 1
2 = P 2

1 = µ(1− ξ)2a. (133)

The balance of angular momentum in Eq. 53 is verified as satisfied since, for the
present problem,

σab = σba ⇔ P 2
1 = P 1

2 − εP 1
1 = P 1

2 . (134)
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Derivations from Section 5.1 result in the following form of Eq. 128 that applies for
the present example:

ψ = ψ(ε,D, ∂D/∂X) = ψ(∂υ/∂X,D, ∂D/∂X)

= W (ε,D, ∂D/∂X) + f(D, ∂D/∂X).
(135)

Written in terms of lattice shear strain and normalized order parameter, this be-
comes

ψ = ψ[a(ε, ξ′), ξ, ξ′] = W [a(ε, ξ′), ξ] + f(ξ, ξ′). (136)

Adding f to the elastic strain energy W reduced under simple shear leads to

ψ = 1
2
µ(1− ξ)2a2 + Υξ2/l + Υl(ξ′)2. (137)

The first term on the right side of Eq. 137 accounts for elastic strain energy degraded
by damage associated with ξ ∈ [0, 1], and the other 2 terms combine to account
for surface energy associated with the particular class of shear defect (shear band,
stacking fault, mode II crack, etc.) under consideration. This energy function con-
tains no explicit dependence on G and is nearly identical to that of Eq. 84, differing
only in the elastic constant (µ versus Λ = λ + 2µ) and physical meanings of the
lattice strain variable a, the order parameter ξ, and possible values of Υ and l.

Relevant (i.e., possibly nonzero) thermodynamic forces of Section 3 are then ob-
tained by direct calculation as

P = P 1
2 =

∂ψ

∂ε
=
∂W

∂a

∂a(ε, ξ′)

∂ε
= µ(1− ξ)2a; (138)

Q = Q2 =
∂ψ

∂D
=

1

l

∂ψ

∂ξ
= −µ

l
(1− ξ)a2 + 2

Υ

l2
ξ = − Pa

l(1− ξ)
+ 2

Υ

l2
ξ; (139)

Z = Z1
2 =

∂ψ

∂D′
=

1

l

∂ψ

∂ξ′
= 2Υξ′ +

1

l

∂ψ

∂a

∂a

∂ξ′
= 2Υξ′ − µ(1− ξ)2a = 2Υξ′ − P.

(140)
Notice that Eq. 138 is consistent with Eq. 133. The linear momentum balance in
Eqs. 59 and 64 becomes

∂P (X,D)

∂X
+
∂P (X,D)

∂D

∂D

∂X
+ P

G′(D)

2G(D)

∂D

∂X
=

dP
dX

+ P
G′

2G

dD
dX

= 0. (141)
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Micromomentum balances in Eqs. 60 and 65 become

∂Z(X,D)

∂X
+

[
∂Z(X,D)

∂D
+ Z

G′(D)

2G(D)
+ P

∂2υ(X,D)

∂D2

]
∂D

∂X

− G′(D)

G(D)
ψ(X,D) = Q(X,D).

(142)

Substituting from Eqs. 125, 126, and 138–140, these balance laws become, respec-
tively,

dP
dX

= −kP dξ
dX

; P

[
a

1− ξ
+
∂2υ

∂ξ2
ξ′
]

+ 2Υlξ′′ − 2
Υ

l
ξ = 2k[ψ −Υl(ξ′)2].

(143)
The relations in Eq. 143 are 2 coupled ordinary nonlinear differential equations
wherein field variables P , a, ξ, υ = ϕ−Y , and ψ depend ultimately on independent
variable X .

Remark: Balance laws in Eqs. 90 and 143 are mathematically identical, but phys-
ically represent 2 different problems (i.e., tensile deformation and simple shear de-
formation), with P representing axial stress in the former and shear stress in the
latter.

5.3 Problem Solutions: Riemannian Geometry
Considered first is a Riemannian referential configuration space (in fact, a Cartesian
structure), with k = 0→ G = 1 = constant. As in Section 4.3, kinematics are still
Finslerlian since ϕ can potentially depend explicitly on both D and X rather than
just X . Balance laws in Eq. 143 reduce to

dP
dX

= 0; P

[
a

1− ξ
+
∂2υ

∂ξ2
ξ′
]

+ 2Υlξ′′ − 2
Υ

l
ξ = 0. (144)

The first of Eq. 144 results immediately in spatially constant shear stress compo-
nents:

P = P0 = µ(1− ξ)2a = constant. (145)

The solution of the second balance equation requires more precise boundary con-
ditions. Two problems corresponding to 2 different sets of boundary conditions are
addressed: homogeneous damage of the deformed slab over X ∈ [0, L] (i.e., mi-
croscopic shear fractures or slip bands D = D2 evenly distributed along the finite
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length of the slab) and localized damage corresponding to a globally stress-free
deformed state (i.e., complete shear failure of the slab along a planeX = constant).

5.3.1 Homogeneous Damage
For homogeneous damage, ξ′(X) = 0∀X ∈ [0, L0] ⇒ ξ(0) = ξ(L0) = ξH .
Boundary conditions on shear displacement (or on ϕ along Y = 0) are prescribed
as follows:

υ(0, D) = υ0 = ±D = ±lξH , υ(L0, D) = υL = aHL0 ± lξH . (146)

Here, υL is the prescribed displacement of the deformed slab at x = L, with aH and
ξH constants. Evolving rigid body displacement (i.e., shear slip) at the end of the
slab is quantified by υ0. Equations 144 and 145 result in

P0 = µ(1− ξH)2aH , ξH = 1/[1 + 2Υ/(µla2
H)]. (147)

Given υL, Eqs. 146 and 147 can be solved simultaneously for the homogeneous
damage field ξH , stress P0, and lattice shear strain aH . The problem kinematics are
consistent with the separable decomposition of the motion ϕ into

ϕ[X, ξ(D), Y ] = υ(X,D) + Y = χ(X) + Y ± lξ(D), F 2
1 = dϕ/dX = χ′,

(148)
where for homogeneous damage and strain fields,

ϕ[X, ξH , Y ] = aHX + Y ± lξH , χ = aHX, F 2
1 = aH . (149)

The total energy of the slab per unit width in the Y -direction is obtained as

Ψ(υL, ξH) = ΨH =

∫ L0

0

[µ(1− ξH)2a2
H/2 + Υξ2

H/l]dX

= [µ(1− ξH)2a2
H/2 + Υξ2

H/l]L0.

(150)

Remark: Letting ϕ(X, Y,D) → ϕ(X, Y ) = χ(X) + Y and modifying Eq. 146
to υ0 = 0, υL = aHL0 recovers a description identical to a prior geometrically
nonlinear phase field study.43
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5.3.2 Stress-Free State
For a stress-free state, P = P0 = 0∀X ∈ [0, L0]. Boundary conditions on the order
parameter ξ(X) or internal state variable representing microshearing are prescribed
as follows:

ξ(0) = D(0)/l = 1, ξ(L0) = 0. (151)

The second of governing equations in Eq. 144 becomes

ξ′′ − ξ/l2 = 0⇒ ξ(X) = c1 exp(X/l) + c2 exp(−X/l). (152)

Constants c1, c2 are determined by boundary conditions in Eq. 151, leading to a
particular analytical solution identical to that in the second of Eq. 99. The null
stress condition results in a(X) = 0∀ξ(X) 6= 1; since lattice shear strain a(X)

and shear displacement υ0 = υ(0, D) are indeterminate where ξ = 1, the total
shear displacement at the undamaged end of the slab, υL, is also indeterminate.
Physically, this corresponds to rigidly displacing the bar, once disconnected from
its fully localized and degraded site at X = 0, without altering its internal energy.
Total energy per unit width is the integral

Ψ(ξ) = ΨF =

∫ L0

0

Υ[(ξ′)2l + ξ2/l]dX. (153)

Remark: Eq. 152 is a result identical to that of a phase field theory of shear failure43

.

5.4 Problem Solutions: Minkowskian Geometry
Considered now is a referential configuration space that is pseudo-Finslerian with
k 6= 0 in Eq. 125. Even though the referential metric is pseudo-Minkowskian, de-
formation kinematics are again of Finsler nature. Balance laws in Eq. 143 apply;
the first results in

dP/P = −kdξ ⇒ P = P0 exp(−kξ), (154)

where P0 is the constant shear stress corresponding to k = 0 and/or ξ = 0. The
2 problems considered in Sections 5.3.1 and 5.3.2 are revisited in the context of
the pseudo-Minkowski metric in Eq. 125, recalling that k > 0 accounts for dilata-
tion in the damaged or intensely sheared zone omitted in the Riemannian metrical
representation of Section 5.3.
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5.4.1 Homogeneous Damage
For homogeneous damage, ξ′(X) = 0∀X ∈ [0, L0] ⇒ ξ(0) = ξ(L0) = ξH .
Boundary conditions on displacement υ = ϕ− Y are identical to Eq. 146:

υ(0, D) = υ0 = ±D = ±lξH , υ(L0, D) = υL = aHL0 ± lξH . (155)

Equations 143 and 154 give

P = P0 exp(−kξH) = µ(1− ξH)2aH = constant,

µa2
H(1− ξH)− 2(Υ/l)ξH = 2kψ(aH , ξH).

(156)

Given υL, Eqs. 155 and 156 can be solved simultaneously for ξH , P0, and aH .
Kinematics are consistent with separable decompositions in Eqs. 148 and 149. The
total energy per unit width of the elastic slab is

Ψ(υL, ξH) = ΨH =

∫ L0

0

[µ(1− ξH)2a2
H/2 + Υξ2

H/l]dX

= [µ(1− ξH)2a2
H/2 + Υξ2

H/l]L0.

(157)

Shown in Fig. 3 are ξ = ξH , P = PH , and Ψ = ΨH versus applied shear displace-
ment, computed via Eqs. 156 and 157, where the positive choice ϕ(X, Y,D) =

χ(X) + Y + D is applied in Eqs. 148 and 155. Representative material parame-
ters are identical to those invoked in Section 4.4.1: µ = 109N/m2, Υ = 1N/m,
l = 10−9m, L0 = 103l, and 0 ≤ k ≤ ln 2. Trends are similar to those depicted in
Fig. 1. For fixed k, ξ increases monotonically with increasing shear displacement
(Fig. 3a), shear stress P increases to a maximum and then decreases (Fig. 3b), and
energy Ψ increases monotonically (Fig. 3c). As k increases, ξ tends to decrease for
0 < υL/L0 < 0.5, while P and Ψ tend to increase. Effects of k are more pronounced
in Fig. 3 than in Fig. 1, with the difference due to different elastic constants for shear
and uniaxial tension (i.e., µ and Λ = 3µ). Peak shear stress and applied displace-
ment at which peak stress is attained both increase significantly with increasing k,
implying an increase in shear strength and stability of the material commensurate
with microscopic dilatation represented by k > 0. Again, increases in stress and
energy correlate with a decrease in order parameter since both P and strain energy
density W are affected by a multiplication factor of (1− ξ)2: see Eqs. 129 and 133.
The contribution of the Finsler kinematic lξH term in Eq. 149—in other words, rigid
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slip—is negligible for l/L0 � 1, so the present Finsler solution with k = 0 and
phase field theory43 provide nearly identical results when microscopic dilatation is
omitted.

(a) (b)

(c)

Fig. 3 Shear deformation, homogeneous-state solutions, l/L0 = 10−3: (a) order parameter
ξ = D/l, (b) normalized shear stress, and (c) normalized total energy

5.4.2 Stress-Free State
Just as imposed in Section 5.3.2, let P = 0∀X ∈ [0, L0]. Boundary conditions on
ξ(X) are prescribed as in Eq. 151:

ξ(0) = D(0)/l = 1, ξ(L0) = 0. (158)
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The second of governing equations in Eq. 143, with the reduced form of energy
density in Eq. 137, becomes the nonlinear second-order ordinary differential equa-
tion

ξ′′ − ξ/l2 + k[(ξ′)2 − ψ/(Υl)] = 0⇒ ξ′′ = (ξ/l2)(1 + kξ). (159)

Defining ζ = ξ′ such that ξ′′ = ζ · dζ/dξ, this can be transformed into the nonho-
mogeneous first-order differential equation and corresponding general solution

ζdζ = (ξ/l2)(1 + kξ)dξ ⇒ ζ = ±(ξ/l)
√

1 + 2kξ2/3 + c1/ξ2. (160)

As in Section 4.4.2, the latter can be rewritten and then integrated to give

dξ = −(ξ/l)
√

1 + 2kξ2/3 dX ⇒ X(ξ) =

∫ ξ

1

−ldβ
β
√

1 + 2kβ2/3
. (161)

The null stress condition again results in a(X) = 0∀ξ(X) 6= 1 with υ0 and υL

indeterminate due to admissible rigid body motion. Total energy per unit width is
the line integral

Ψ(ξ) = ΨF =

∫ L0

0

Υ[(ξ′)2l + ξ2/l]dX. (162)

Remark: Developments in Section 5.4.2 are mathematically identical to those of
Section 4.4.2, but with different physical implications (i.e., shear failure versus ten-
sile failure). Solutions depicted in Fig. 2 and Table 1 apply here, with identical
mathematical trends to those discussed in Section 4.4.2, including close agreement
of shear failure or mode II fracture energies among the present theory, phase field
theory, and Griffith’s theory. Physically, the pseudo-Finsler theory predicts that di-
latation is associated with an increase in slip strength or crack sliding resistance
as well as failure energy. Such predictions agree with physical observations.67 In
an intensely sheared zone, effects of microscopic friction or locking of asperities
increase when the material dilates in such a zone. Recall from Section 5.1 that
the dilatation here may be the result of heterogeneous (i.e., imperfect) microscopic
fractures (as opposed to perfect cleavage), expansion of the material due to nonlin-
ear elastic effects associated with defect cores (e.g., dislocation cores, point defects,
and stacking faults68), and/or thermal expansion due to temperature rise in adiabatic
shear.66 It should be noted, however, that the present variational model does not ex-
plicitly monitor time-dependent dissipated energy associated with sliding friction
or dislocation glide.

36



Approved for public release; distribution is unlimited.

6. Physics of Cavitation
The final of 3 boundary value problems involves radial expansion of a spherical
nonlinear elastic body. Cavitation (i.e., void or vacancy formation and growth) may
occur uniformly throughout the domain and/or localized at or very near to the cen-
ter of the sphere, depending on particular boundary conditions imposed in what
follows. A general free energy function is postulated as in Section 5 and then spe-
cialized to the current geometry, but here curvilinear (specifically, spherical) coordi-
nates are needed. This complicates the present analysis relative to those considered
in Sections 4 and 5 that were tractable via Cartesian frames. The metric tensor nec-
essarily depends on position and may also depend on the internal state vector; when
the latter applies, a completely pseudo-Finslerian referential configuration space
results.

6.1 Problem Geometry and Kinematics
The material body is an elastic sphere of radius R0. The referential material mani-
fold is specified as {M : R = X1 ∈ [0, R0],Θ = X2 ∈ [0, π],Φ = X3 ∈ (−π, π]}.
By construction, spherical symmetry conditions are imposed so that solution field
variables do not depend on angular coordinates Θ,Φ. The internal state vector is
restricted to have a radial component only: {DA} → {D1, 0, 0}. Metric tensor G
necessarily depends on X and possibly depends on D. Consistent with these proto-
cols, definitions and identities of Section 2.1 result in

{R,Θ,Φ} = {X1, X2, X3}, {D1, D2, D3} = {D, 0, 0}. (163)

Denoting by Ḡ = Ḡ(X) the usual metric tensor of Euclidean space in spherical
coordinates25,71 and B = B(D) a differentiable scalar function of the internal state,
the following separable form of the metric tensor G(X,D) is assumed:

G(X,D) = Ḡ(X)B(D)

=

Ḡ11 0 0

0 Ḡ22(X) 0

0 0 Ḡ33(X)

B(D) =

1 0 0

0 R2 0

0 0 R2 sin2 Θ

B(D);

(164)

G = B3Ḡ = B3R4 sin2 Θ. (165)
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Let γ̄ABC denote Christoffel symbols of the second kind derived from Ḡ, and let γABC
denote those derived from G. From Eq. 6, these are equivalent:

γABC = GADγBCD = (B−1ḠAD)(Bγ̄BCD) = γ̄ABC . (166)

Nonzero Christoffel symbols resulting from Eq. 164 are thus, with indices (1, 2, 3)↔
(R,Θ,Φ),25,71

γΘ
RΘ = γΦ

RΦ = 1/R, γRΘΘ = −R, γΦ
ΘΦ = cot Θ,

γRΦΦ = −R sin2 Θ, γΘ
ΦΦ = − sin Θ cos Θ.

(167)

Since the only nonvanishing component of D is radial and since γARR = 0, the
spray and nonlinear connection coefficients derived from it vanish identically for
this problem:

GA = 1
2
γABCD

BDC = 1
2
γARRD ·D = 0, NA

B = GA
B = ∂̄BG

A = 0. (168)

Denoting B′ = ∂B/∂D1 = dB/dD, nonzero components of Cartan’s tensor in Eq.
7 are

C111 = 1
2
B′, C122 = C212 = 1

2
B′R2, C133 = C313 = 1

2
B′R2 sin2 Θ,

C221 = −1
2
B′R2, C331 = −1

2
B′R2 sin2 Θ.

(169)

The trace of Cartan’s tensor in the radial direction will be used later:

CA
RA = C1

11 + C2
12 + C3

13 = 3B′/(2B). (170)

The reference configuration space is (pseudo)-Finslerian. Invoking the Chern-Rund
connection with vanishing nonlinear connection coefficients from Eq. 168, hori-
zontal coefficients are equal to Levi-Civita coefficients derived from ḠAB, while
vertical coefficients vanish by definition of the Chern-Rund connection:

HA
BC = KA

BC = ΓABC = γABC ; V A
BC = Y A

BC = 0. (171)

The spatial configuration manifold is specified as {m : r = x1 ∈ [0, r0], θ = X2 ∈
[0, π], φ = x3 ∈ (−π, π]}. Metric tensor g necessarily depends on x, but by con-
struction does not depend on the internal state vector, whose spatial representation
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d is presumed radial but does not further enter the problem at hand. Definitions and
identities of Section 2.2 result in

{r, θ, φ} = {x1, x2, x3}, {d1, d2, d3} = {d, 0, 0}. (172)

The following usual spherical form of a Riemannian metric tensor g(X) is assumed:

g(x) =

1 0 0

0 r2 0

0 0 r2 sin2 θ

 , g = r4 sin2 θ. (173)

Nonzero symbols resulting from Eq. 173 are, with indices (1, 2, 3)↔ (r, θ, φ),25,71

γθrθ = γφrφ = 1/r, γrθθ = −r, γφθφ = cot θ,

γrφφ = −r sin2 θ, γθφφ = − sin θ cos θ.
(174)

Since the metric is Riemannian as opposed to Finslerian (i.e., no dependence on
{d}), Cartan’s tensor vanishes, nonlinear connection coefficients from the spray
vanish by arguments akin to Eq. 168, and the horizontal Chern-Rund coefficients
coincide with Eq. 174:

cabc = 0, nab = 0, Γabc = γabc. (175)

Analogously to Eq. 171, the following horizontal and vertical connection coeffi-
cents are imposed for gradients of basis vectors:

Ha
bc = Ka

bc = Γabc = γabc; V a
bc = Y a

bc = 0. (176)

Motions, deformations, and director gradients defined in Section 2.3 reduce as fol-
lows under spherical expansion/contraction, with ϕ = r denoting deformation in
the radial (R) direction:

r = ϕ(R,D) = r(R,D), θ = Θ, φ = Φ; d = ϑ(R,D), D = D(R);

(177)

F(R,D) =


∂r(R,D)
∂R

+ ∂r(R,D)
∂D

∂D(R)
∂R

0 0

0 ∂θ
∂Θ

0

0 0 ∂φ
∂Φ

 =

F
r
R(R,D) 0 0

0 1 0

0 0 1

 ; (178)
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J(R,D) =
√
g(r, θ)/G(R, θ,D)F 1

1 (R,D)F 2
2F

3
3 = [r2F r

R(R,D)]/(R2B3/2);

(179)
C11 = (F r

R)2, C22 = r2, C33 = r2 sin2 θ, C12 = C13 = C23 = 0; (180)

det C = J2G; (181)

D1
|1 = DR

|R = ∂RD −NR
R +KR

RRD = ∂D/∂R = D′. (182)

Internal state variable D is physically identified with radial microscopic opening in
the material associated with cavitation. The defect associated with D could be, for
example, a pore or void in a rock or metal or a site vacancy in a crystal lattice.72,73

A lattice expansion measure a, deformation gradient F̄, deformation tensor C̄, and
Jacobian determinant J̄ are defined for future use as follows:

a(R,D,D′) = F r
R(R,D)−dϑ[D(R)]

dD
∂D(R)

∂R
=

∂

∂R
{r(R,D)−ϑ[D(R)]}, (183)

F̄(R,D,D′) =

a(R,D,D′) 0 0

0 1 0

0 0 1

 ; (184)

C̄AB = F̄ a
AgabF̄

b
B; C̄11 = a2, C̄22 = r2, C̄33 = r2 sin2 θ,

C̄12 = C̄13 = C̄23 = 0;
(185)

J̄ =
√

det(C̄AB)/Ḡ = det F̄
√
g/Ḡ = ar2/R2. (186)

Local lattice expansion occurs at R for a(R) > 0, contraction for a(R) < 0. Here,
ϑ[D(R)] is a continuous scalar function of its argument. As in Sections 4 and 5,
constant l with dimensions of length and a normalized order parameter ξ are

ξ = D/l, ξ′ = D′/l; a = δRϕ
r − dϑ

dD
dD
dR

= F r
R − lϑ′ξ′. (187)

The constant l will later be identified as the value of radial microdisplacement at
which a material point within the sphere supports no radial stress. Letting k denote
a constant depending on the material, a more specific form of the pseudo-Finsler
metric in Eq. 164 is henceforth invoked:

G(X,D) = Ḡ(X)B(D) = Ḡ(X) exp(2kξ/3), B(D) = exp[(2kD)/(3l)];

(188)

40



Approved for public release; distribution is unlimited.

B′/B = ∂̄1G11/G11 = ∂̄2G22/G22 = ∂̄3G33/G33 = 2k/(3l). (189)

This can be viewed as a Weyl transformation or Weyl rescaling48 of the spherical
Euclidean metric ḠAB. The radial component of the trace of Cartan’s tensor of Eq.
170 is

CA
RA = 3B′/(2B) = k/l. (190)

The length of a referential line element in Eq. 14 and the corresponding volume
form in Eq. 15 become

|dX|2 = exp(2kξ/3)(dR · dR +R2dΘ · dΘ +R2 sin2 ΘdΦ · dΦ),

dΩ = exp(kξ/3)R2 sin ΘdR ∧ dΘ ∧ dΦ.
(191)

For ξ > 0, expansion occurs when k > 0 and contraction when k < 0. Physical
justification is obvious for the former: cavitation and void growth are associated
with expansion. The latter condition would apply for collapse of existing pores,
for example. Because G is not homogeneous of degree zero in D, the reference
configuration space is a pseudo-Finsler space.16

6.2 Energy, Thermodynamic Forces, and Balance Laws
Analogoulsy to that considered in Section 5.2, a compressible neo-Hookean strain
energy function W depending on lattice deformation tensor C̄ is assumed to enter
ψ of Eq. 52:

ψ(CAB, D
A, DA

|B, GAB) = W [C̄AB(CAB, D
A
|B), DA, ḠAB] + f [DA, DA

|B, ḠAB],

(192)
where function f accounts for intrinsic energy of spherical defects, such as sur-
face energy of a void or cavity. With µ and λ denoting the usual isotropic elastic
constants,

W = [{1
2
µ(C̄ABḠ

AB − 3)− µ ln J̄ + 1
2
λ(ln J̄)2](1− ξ)2, (193)

f = (Υ/l)(DAḠABD
B/l2 +DA

|BḠACḠ
BDDC

|D). (194)

A generally nonsymmetric stress tensor P̄ associated with W is

P̄A
a =

∂W

∂F̄ a
A

=
∂ψ

∂F̄ a
A

= [µF̄ b
BgabḠ

AB + (λ ln J̄ − µ)F̄−1A
a ](1− ξ)2. (195)
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Since Ḡ(X) does not depend on D, SAB = 0 follows from the prescription in Eq.
192.

For the present case of spherical symmetry with Eqs. 180 and 185 now applied,

∂{F̄ a
A[a(F r

R, D
′)]}/∂F b

B = (∂a/∂F r
R)δab δ

A
B = δab δ

A
B ⇒ PA

a = P̄A
a . (196)

This identity, with F̄ 1
1 = a, F̄ 2

2 = F̄ 3
3 = 1 and J̄ defined in Eq. 186, produces the

only nonzero stress components

P = P 1
1 = PR

r =
(1− ξ)2

a
[µ(a2 − 1) + λ ln J̄ ],

P 2
2 = PΘ

θ = P 3
3 = PΦ

φ = (1− ξ)2

[
µ

(
r2 −R2

R2

)
+ λ ln J̄

]
.

(197)

The balance of angular momentum in Eq. 53 is trivially satisfied since F and g are
of diagonal form and all shear stresses vanish.

Using derivations from Section 6.1, the following form of Eq. 192 applies hence-
forth:

ψ = ψ(F r
R, D, ∂D/∂R) = W [a(F r

R, ξ
′), r, ξ] + f(ξ, ξ′)

= (1− ξ)2W0[a(F r
R, ξ

′), r] + f(ξ, ξ′).
(198)

Adding f to the elastic strain energy W reduced under spherical deformation leads
to the following reduced form of total free energy density ψ:

ψ(a, r, ξ, ξ′) = (1− ξ)2W0(a, r) + Υξ2/l + Υl(ξ′)2

= (1− ξ)2{1
2
µ(a2 + 2r2/R2 − 3)− µ ln(ar2/R2)

+ 1
2
λ[ln(ar2/R2)]2}+ Υ[ξ2/l + l(ξ′)2].

(199)

Nonzero thermodynamic forces are then computed as follows, with stress compo-
nents consistent with Eq. 197:

P =
(1− ξ)2

a
[µ(a2 − 1) + λ ln(ar2/R2)],

T =
R

2r
(PΘ

θ + PΦ
φ ) =

R(1− ξ)2

r
[µ(r2/R2 − 1) + λ ln(ar2/R2)];

(200)

Q = QR =
∂ψ

∂D
=

1

l

∂ψ

∂ξ
= 2

Υ

l2
ξ − 2(1− ξ)

l
W0; (201)
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Z = ZR
R =

∂ψ

∂D1
|1

=
1

l

∂ψ

∂ξ′
=

1

l

∂f

∂ξ′
+

(1− ξ)2

l

∂W0[a(F r
R, ξ

′), r]

∂a

∂a

∂ξ′
= 2Υξ′ − P.

(202)
The following scalar function will also be invoked later, where ψ is the function in
Eq. 199:

ι(a, r, ξ, ξ′) = [2B/(3B′)]GAB∂̄1GABψ(a, r, ξ, ξ′) = 2ψ(a, r, ξ, ξ′)

= 2(1− ξ)2W0(a, r) + 2Υ[ξ2/l + l(ξ′)2].
(203)

Momentum balances specific to the present problem are derived as follows. Thelin-
ear momentum balance in Eq. 59 yields the three equations (a = 1, 2, 3 = r, θ, φ):

∂AP
A
a + ∂̄BP

A
a ∂AD

B + PB
a γ

A
AB − PA

c γ
c
baF

b
A + PA

a C
C
BC∂AD

B = 0. (204)

For a = 2, 3, since PΘ
θ = PΦ

φ from Eq. 197, and θ = Θ, φ = Φ from spherically
symmetric deformation, these reduce to the two trivially satisfied equations

PΘ
θ γ

A
AΘ − PΦ

φ γ
φ
φθF

φ
Φ = PΘ

θ cot Θ− PΦ
φ cot θ = 0, PA

c γ
c
bφF

b
A = 0. (205)

A nontrivial linear momentum balance remains for the radial direction a = 1 = r

in Eq. 204:

∂RP +
∂P

∂D

∂D

∂R
+

2

R
P − 1

r
(PΘ

θ + PΦ
φ ) + PCA

RA

∂D

∂R
= 0. (206)

The only nontrivial component of the micromomentum balance in Eq. 60 is for the
radial direction, C = 1 = R:

∂Z

∂R
+

2

R
Z +

(
∂Z

∂D
+ P

∂2ϕ

∂D2

)
∂D

∂R
+

3B′

2B

(
Z
∂D

∂R
− ι
)

= Q. (207)

Substituting from Eqs. 190 and 200 leads to, with P and T radial and transverse
stress components, the following reduced form of Eq. 206:

dP
dR

+
2

R
(P − T ) = −kP dξ

dR
. (208)
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Substituting from Eqs. 190, 201, 202, and 203 and multiplying Eq. 207 by l
2

gives

Υlξ′′ +
2Υl

R
ξ′ − Υ

l
ξ − l

2

(
dP
dR
− P

l

∂2r

∂ξ2
ξ′
)

+ (1− ξ)W0

= k

[
l

2
Pξ′ + (1− ξ)2W0 +

Υ

l
ξ2

]
.

(209)

Relations in Eqs. 208 and 209 are 2 coupled nonlinear ordinary differential equa-
tions wherein field variables P , T , a, r, ξ, andW0 depend ultimately on independent
variable R.

6.3 Problem Solutions: Riemannian Geometry
Considered first is a Riemannian referential configuration space with k = 0 →
B = 1 = constant ⇒ G(X,D) → Ḡ(X). As in Sections 4.3 and 5.3, kinematics
are still Finslerian since ϕ can potentially depend on both D and R rather than just
R. Balance laws in Eqs. 208 and 209 reduce to

dP
dR

=
2

R
(T − P );

Υlξ′′ +
2Υl

R
ξ′ − Υ

l
ξ + (1− ξ)W0 +

P

2

[
2l

R

(
1− T

P

)
+
∂2r

∂ξ2
ξ′
]

= 0.
(210)

Unlike the problem considered in Section 4.3, the first of Eq. 210 does not neces-
sarily lead to spatially uniform stress fields. Instead, dP

dR = 0 occurs only for the
case of P = T , corresponding to a spherical and hydrostatic stress state:

dP/dR = 0⇔ T = P = PR
r = (R/r)PΘ

θ = (R/r)PΦ
φ = P0 = constant. (211)

From Eq. 197, conditions in Eq. 211 require homogeneous lattice strain of the form
a = r/R and/or complete cavitation ξ(R) = 1∀R ∈M since

P = T + (1− ξ)2µ[(a− r/R)− (1/a−R/r)]. (212)

Solutions of Eq. 210 require more precise boundary conditions. Two problems cor-
responding to 2 different sets of boundary conditions are addressed: homogeneous
damage of the deformed sphere over R ∈ [0, R0] (i.e., microscopic voids or va-
cancies D = DR = D1 evenly distributed within the volume, in conjunction with
possible opening at the origin) and localized cavitation corresponding to a globally
stress-free deformed state (i.e., complete cavitation ξ → 1 as R→ 0).
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6.3.1 Homogeneous Damage
For homogeneous damage, ξ′(R) = 0∀R ∈ [0, R0]⇒ ξ(0) = ξ(R0) = ξH . Bound-
ary conditions on radial displacement r = ϕ are prescribed as follows:

r(0, D) = ϕ0 = D = lξH , r(R0, D) = ϕR = aHR0 + lξH . (213)

Here, ϕR is the prescribed outer radius of the deformed sphere, with aH = a(R0)

and ξH constants. The evolving radius of the discrete cavity at the origin can be
interpreted as ϕ0. The problem kinematics, with ξ′ = 0 and ϑ = D, are consistent
with the separable decomposition of the motion ϕ into

ϕ[R, ξ(D)] = χ(R) + ϑ(D) = χ(R) + lξ(D), F = F r
R = ∂ϕ/∂R = χ′ = a.

(214)
Equations 197 and 210 result in

P (R) =
(1− ξH)2

a
[µ(a2 − 1) + λ ln(ar2/R2)];

Υ

l
ξH = (1− ξH)W0[a(R), r(R)] + P

[
l

R

(
1− T

P

)]
.

(215)

Given ϕR, then it follows that Eq. 212, the second of Eq. 213, and Eq. 215 evaluated
at r(R0) = ϕR can be solved simultaneously for the homogeneous damage field
ξH , stresses PH = P (R0) and TH = T (R0), and the lattice strain a(R0) = aH .
Then, with ξH so determined, Eqs. 214 and 215 can be solved simultaneously along
R < R0 to determine the distribution of deformations, stresses, and resulting energy
density inside the sphere. The total energy of the elastic sphere is obtained via the
volume integral

Ψ(ϕR, ξH) = ΨH = 4π

∫ R0

0

{(1− ξH)2W0[a(R), r(R)] + Υξ2
H/l}R2dR. (216)

Remark: Letting ϕ(r,D) → ϕ(R) = χ(R) and modifying Eq. 213 to ϕ0 =

0, ϕR = aHR0 recovers a classical rather than Finslerian description of deformation
kinematics in which micromotion D does not contribute to macromotion ϕ. In such
a case, the homogeneous solution for deformation is a = r/R = aH = ϕR/R0 =

constant, with P = T = P0 = constant and ξH determined by simultaneous solu-
tion of Eq. 215. Bifurcation74 to a cavitated state at the origin is not addressed by
this classical solution.
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6.3.2 Stress-Free State
For a stress-free spherical manifold M, P = T = 0∀R ∈ [0, R0]. Particular bound-
ary conditions on the order parameter ξ(R) or internal state variable representing
microdisplacement are prescribed somewhat analogously to Eqs. 98 and 151 as

ξ(ε0R0) = D(ε0R0)/l = 1− ε0, ξ(R0) = 0. (217)

As demonstrated in Eq. 218, the general analytical solution for ξ is singular at
R = 0; therefore, the solution space is restricted to the domain ε0 ≤ R/R0 ≤
1, where ε0 � 1 is a small parameter. Linear momentum balance corresponding
to the first of Eq. 210 is trivially satisfied. Noting that W0 vanishes for a stress-
free state, the second of the governing equations in 210 becomes the homogeneous
nonlinear second-order ordinary differential equation for the field ξ = ξ(R) with
corresponding general solution

ξ′′ + (2/R)ξ′ − ξ/l2 = 0⇒ ξ(R) = (1/R)[c1 exp(R/l) + c2 exp(−R/l)]. (218)

With particular boundary conditions of Eq. 217 imposed, the complete solution for
R0 = 1 is

ξ(R) =
ε0

R

(1− ε0) exp[−(R + ε0)/l]

exp[2(1− ε0)/l]− 1
[exp(2R/l)− exp(2/l)]. (219)

Remark: Unlike the problems considered in Sections 4.3.2 and 5.3.2, the displace-
ment condition at the outer (inner) boundary R0 (ε0R0) is not arbitrary, since van-
ishing stress in Eq. 197 requires a = r/R = 1∀R : ξ 6= 1. The boundary conditions
in Eq. 217 thus imply r(R0) = R0 in this case. Since the radial order parameter
gradient need not vanish, consistency with the nonlinear elastic constitutive model
requires ϑ = 0 in the first of Eq. 183 since a = ∂Rr = 1 for this example.

6.4 Problem Solutions: Finslerian Geometry
Considered now is the general scenario wherein the referential configuration space
is pseudo-Finslerian with k 6= 0 in Eq. 188. Here the referential metric is pseudo-
Finslerian, and deformation kinematics are of Finsler character because motion
function r = ϕ(R,D) can potentially depend on D as well as R. Balance laws
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in Eqs. 208 and 209 apply in full; substituting the first into the second results in

Υlξ′′ +
2Υl

R
ξ′ − Υ

l
(1 + kξ)ξ +

P

2

[
2l

R

(
1− T

P

)
+
∂2r

∂ξ2
ξ′
]

+ (1− ξ)[1− k(1− ξ)]W0 = 0.

(220)

Solutions again require specification of boundary conditions. The same 2 problems
considered in Sections 6.3.1 and 6.3.2 are now revisited in the context of the pseudo-
Finsler metric in Eq. 188, recalling that k > 0 accounts for microscopic dilatation
in the cavitated or porous zone omitted in the Riemannian metrical representation
of Section 6.3.

6.4.1 Homogeneous Damage
For homogeneous damage, ξ′(R) = 0∀R ∈ [0, R0]⇒ ξ(0) = ξ(R0) = ξH . Bound-
ary conditions on displacement are identical to Eq. 213:

r(0, D) = ϕ0 = D = lξH , r(R0, D) = ϕR = aHR0 + lξH , (221)

where ϕR is the prescribed outer radius of the deformed sphere, with aH and ξH
constants, and with ϕ0 the cavity radius at the core of the body. Equations in 214
still apply. Equations 197 and 220 result in

P (R) =
(1− ξH)2

a
[µ(a2 − 1) + λ ln(ar2/R2)], (222)

Υ

l
(1+kξH)ξH =

Pl

R

(
1− T

P

)
+(1− ξH)[1−k(1− ξH)]W0[a(R), r(R)]. (223)

Given displacement boundary condition ϕR in Eq. 221, the solution procedure is
analogous to that described in Section 6.3.1 (albeit here with k 6= 0), and the total
energy of the cavitated elastic sphere is again obtained via the volume integral in
Eq. 216.

Shown in Fig. 4 are ξ = ξH , P (R0) = PH , and ψ(R0) versus applied radial dis-
placement, computed via Eqs. 222 and 223. Material parameters are identical to
those invoked in Section 4.4.1: µ = 109N/m2, Υ = 1N/m, l = 10−9m, R0 = 103l,
and 0 ≤ k ≤ ln 2. Trends are similar to those of Fig. 1 and Fig. 3: for fixed k, ξ
increases monotonically with increasing radial displacement (Fig. 4a), radial stress
P increases to a maximum and then decreases (Fig. 4b), and local energy density
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ψ at the surface of the sphere increases monotonically (Fig. 4c). As k increases, ξ
tends to decrease for 1.0 < ϕR/R0 < 1.5, while P and ψ tend to increase. Varia-
tions in fields with displacement are more abrupt in the present spherical solutions
than in the 1-D solutions of Sections 4.4.1 and 5.4.1. Peak radial stress and ap-
plied displacement at which peak stress is attained both increase significantly with
increasing k, implying an increase in cavitation resistance and stability of the ma-
terial commensurate with microscopic dilatation represented by k > 0. Increases
in stress and energy correlate with a decrease in order parameter since both P and
strain energy density W are affected by a multiplication factor of (1 − ξ)2 in Eqs.
193 and 197.

(a) (b)

(c)

Fig. 4 Spherical deformation, homogeneous-state solutions, l/R0 = 10−3: (a) order parameter
ξ = D/l, (b) normalized radial stress, and (c) normalized boundary energy density
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Remark: Letting ϕ(r,D)→ ϕ(R) = χ(R) and changing Eq. 221 to ϕ0 = 0, ϕR =

aHR0 recovers a classical description of kinematics in which micromotion D does
not contribute to macro-motion ϕ. Then the homogeneous solution for deformation
is a = r/R = aH = ϕR/R0 = constant, with P = T = P0 = constant and ξH
determined by the simultaneous solution of Eqs. 222 and 223. Again, this homo-
geneous solution does not address the bifurcation problem of cavitation as often
studied in classical nonlinear elasticity,74 nor does it address the possible instability
associated with breaking of spherical symmetry.75

6.4.2 Stress-Free State
As in Section 6.3.2, for a stress-free state P = 0∀R ∈ [0, R0]. Boundary conditions
on the order parameter ξ(R) are as in Eq. 217:

ξ(ε0R0) = D(ε0R0)/l = 1− ε0, ξ(R0) = 0. (224)

The linear momentum balance in Eq. 208 is trivially satisfied, and ϑ = 0 as re-
marked in Section 6.3.2. The micromomentum balance in Eq. 220 becomes, with
W0 = 0, the following homogeneous nonlinear second-order ordinary differential
equation for state variable field ξ = ξ(R):

ξ′′ + (2/R)ξ′ − (1/l2)(1 + kξ)ξ = 0. (225)

This equation has no known general analytical solution for k 6= 0. Therefore, solu-
tions are obtained numerically via a second-order accurate finite difference scheme
with an iterative evaluation of the nonlinear kξ term. Shown in Fig. 5 are profiles
of ξ computed via such a scheme, with ε0 = 0.01, R0 = 10l and the same range
of Weyl scaling factor k considered in Section 4.4.1. Regardless of k, ξ decreases
rapidly from its maximum at R = ε0R0 with increasing R to the imposed boundary
value ξ(R0) = 0. Increasing k provides no apparent change in ξ for R < R0 for
spherical solutions in Fig. 5, in contrast to 1-D Cartesian solutions shown in Fig. 2.
The total energy per unit surface area of the sphere is shown in column 2 of Table 2,
where R0 = 1 for normalization. This energy ΨF increases slightly with increasing
k, similarly to trends observed for uniaxial tension and simple shear deformations
in column 2 of Table 1.
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(a) (b)

Fig. 5 Spherical stress-free solutions, l/R0 = 0.1: (a) ξ: 0 ≤ R ≤ R0 and (b) ξ: 0 ≤ R ≤
0.02R0

Table 2 Stress-free spherical solutions for l/L0 = 0.1: total energy

Weyl Scaling Factor Cavitation: ΨF /(4πR
2
0Υ) · 103

k = 0 1.1077
k = ln 5

4 1.1080
k = ln 3

2 1.1082
k = ln 7

4 1.1083
k = ln 2 1.1085

7. Conclusion
A new theory, in general considering a deformable vector bundle of pseudo-Finsler
character, has been posited, wherein the internal state vector of pseudo-Finsler
space is associated with microdeformation of a material with internal structure. The
general objective has been a physically meaningful theory that is more descriptive
and more predictive than existing models, without ad hoc equations or numerous
fitting parameters. Rather, the focus has been development of general, and at times
more sophisticated, governing equations instead of rudimentary additions to ex-
isting model frameworks. The specifically proposed problem solutions offer new
physical insight into coupling of microscopic dilatation—captured herein by a con-
formal transformation of the metric tensor—with fracture or slip in solids. It has
been demonstrated how the present results can encompass known phase field solu-
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tions when a Riemannian rather than pseudo-Finslerian metric is used and how such
results compare favorably with those of Griffith’s fracture mechanics. Furthermore,
the model predicts an increase in peak strength, displacement at instability, and
failure energy with increasing microscopic dilatation in the intensely damaged or
localized shearing zone, in agreement with physical observation. The general the-
ory is capable of addressing more diverse physical phenomena in condensed matter
depending on differently assumed forms of the fundamental tensor (e.g., anisotropy
or directional rescaling) and different sets of connection coefficients, as may be
demonstrated in future work.

Further remarks on how the proposed Finsler-geometric framework may be ex-
tended and applied to problems of relevance in the context of prior and ongo-
ing work by the author in topical areas of defect mechanics, structural transfor-
mations, and shock physics are in order. Regarding defect mechanics, the inter-
nal state vector could be enlarged to account for various components of defect
density tensors (e.g., dislocations, disclinations, and/or point defects38,39,72,76–78).
Phase field descriptions of deformation twinning60,79 and its competition with frac-
ture43,80,81 could be modeled via identification of state vector components with twin-
ning shear as well as local crack opening. Solid-solid phase transformations such
as stress-induced amorphization82,83 are a natural application of the present frame-
work, which, as has been shown, encompasses and extends existing phase field the-
ory83 to account for additional physics such as microdilatation. Particular crystalline
materials of interest that display twins, slip/shear bands, and fractures include mag-
nesium,60,80 sapphire or corundum,80,84 and boron carbide.46,82,83 For shock physics
applications, consideration of alternative nonlinear elastic potentials85–87 as well as
inertial effects becomes important. Explicit time dependence of field quantities has
been omitted in this report, which has focused, for simplicity/brevity of presenta-
tion, on an incremental, quasi-static variational model. Formulation of a complete
dynamic Finsler-geometric continuum theory with dissipation poses no foreseeable
difficulties. For example, kinetic equations extending the Ginzburg-Landau88 or
Allen-Cahn89 formalism for state vector evolution to the present Finsler modeling
framework should be readily possible.
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Springer; 1968; p. 330–340.

29. Eringen A. Tensor Analysis. In: Continuum Physics; Vol. I; Eringen A, edi-
tor. New York (NY): Academic Press; 1971; p. 1–155.

30. Mindlin R. Microstructure in linear elasticity. Archive for Rational Mechanics
and Analysis. 1964;16:51–78.

31. Ikeda S. A geometrical construction of the physical interaction field and its
application to the rheological deformation field. Tensor, N.S. 1972;24:60–68.

32. Ikeda S. A physico-geometrical consideration on the theory of directors in the
continuum mechanics of oriented media. Tensor, N.S. 1973;27:361–368.

33. Stumpf H, Saczuk J. A generalized model of oriented continuum with
defects. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM).
2000;80:147–169.

34. Yajima T, Nagahama H. Finsler geometry of seismic ray path in anisotropic
media. Proceedings of the Royal Society of London A. 2009;465:1763–1777.

35. Clayton J. On Finsler geometry and applications in mechanics: review and
new perspectives. Advances in Mathematical Physics. 2015;828475.

36. Noll W. Materially uniform simple bodies with inhomogeneities. Archive for
Rational Mechanics and Analysis. 1967;27:1–32.

37. Wang CC. On the geometric structures of simple bodies, a mathematical foun-
dation for the theory of continuous distributions of dislocations. Archive for
Rational Mechanics and Analysis. 1967;27:33–94.

38. Clayton J, Bammann D, McDowell D. A geometric framework for the kine-
matics of crystals with defects. Philosophical Magazine. 2005;85:3983–4010.

39. Clayton J. Defects in nonlinear elastic crystals: differential geometry, finite
kinematics, and second-order analytical solutions. Zeitschrift für Angewandte
Mathematik und Mechanik (ZAMM). 2015;95:476–510.

54



Approved for public release; distribution is unlimited.

40. Steinmann P. Geometrical foundations of continuum mechanics. Berlin (Ger-
many): Springer; 2015.

41. Saczuk J. Finslerian Foundations of Solid Mechanics. Gdansk (Poland): Pol-
skiej Akademii Nauk; 1996.

42. Friedrich M, Schmidt B. An analysis of crystal cleavage in the passage from
atomistic models to continuum theory. Archive for Rational Mechanics and
Analysis. 2015;217:263–308.

43. Clayton J, Knap J. Nonlinear phase field theory for fracture and twinning with
analysis of simple shear. Philosophical Magazine. 2015;95:2661–2696.

44. Brace W, Paulding B, Scholz C. Dilatancy in the fracture of crystalline rocks.
Journal of Geophysical Research. 1966;71:3939–3953.

45. Clayton J. Deformation, fracture, and fragmentation in brittle geologic solids.
International Journal of Fracture. 2010;163:151–172.

46. Clayton J, Tonge A. A nonlinear anisotropic elastic-inelastic constitutive
model for polycrystalline ceramics and minerals with application to boron car-
bide. International Journal of Solids and Structures. 2015;64–65:191–207.

47. Clayton J. An alternative three-term decomposition for single crystal defor-
mation motivated by non-linear elastic dislocation solutions. Quarterly Journal
of Mechanics and Applied Mathematics. 2014;67:127–158.

48. Weyl H. Space-Time-Matter. 4th ed. New York (NY): Dover; 1952.

49. Canuto V, Adams P, Hsieh SH, Tsiang E. Scale-covariant theory of gravitation
and astrophysical applications. Physical Review D. 1977;16:1643–1663.

50. Ozakin A, Yavari A. A geometric theory of thermal stresses. Journal of Math-
ematical Physics. 2010;51:032902.

51. Clayton J, McDowell D. A multiscale multiplicative decomposition for elasto-
plasticity of polycrystals. International Journal of Plasticity. 2003;19:1401–
1444.

52. Clayton J. Dynamic plasticity and fracture in high density polycrystals: con-
stitutive modeling and numerical simulation. Journal of the Mechanics and
Physics of Solids. 2005;53:261–301.

55



Approved for public release; distribution is unlimited.

53. Clayton J. Modeling dynamic plasticity and spall fracture in high den-
sity polycrystalline alloys. International Journal of Solids and Structures.
2005;42:4613–4640.

54. Kohn R. The relaxation of a double-well energy. Continuum Mechanics and
Thermodynamics. 1991;3:193–236.

55. Bhattacharya K. Microstructure of martensite: why it forms and how it gives
rise to the shape-memory effect. New York (NY): Oxford University Press;
2003.

56. Rund H. A divergence theorem for Finsler metrics. Monatshefte fur Mathe-
matik. 1975;79:233-252.

57. Grinfeld M. Thermodynamic methods in the theory of heterogeneous sys-
tems. Sussex (United Kingdom): Longman Scientific and Technical; 1991.

58. Grinfeld P. Introduction to tensor analysis and the calculus of moving sur-
faces. New York (NY): Springer; 2013.

59. Truesdell C, Toupin R. The Classical Field Theories. In: Handbuch der Physik;
Vol. III/1; Flugge S, editor. Berlin (Germany): Springer-Verlag; 1960; p. 226–
793.

60. Clayton J, Knap J. A phase field model of deformation twinning: non-
linear theory and numerical simulations. Physica D: Nonlinear Phenomena.
2011;240:841–858.

61. Capriz G. Continua with microstructure. New York (NY): Springer; 1989.

62. Clayton J, Chung P. An atomistic-to-continuum framework for nonlinear crys-
tal mechanics based on asymptotic homogenization. Journal of the Mechanics
and Physics of Solids. 2006;54:1604–1639.

63. E W, Ming P. Cauchy-Born rule and the stability of crystalline solids: static
problems. Archive for Rational Mechanics and Analysis. 2007;183:241–297.

64. Borden M, Verhoosel C, Scott M, Hughes T, Landis C. A phase-field descrip-
tion of dynamic brittle fracture. Computer Methods in Applied Mechanics and
Engineering. 2012;217:77–95.

56



Approved for public release; distribution is unlimited.

65. Steinmann P, Carol I. A framework for geometrically nonlinear con-
tinuum damage mechanics. International Journal of Engineering Science.
1998;36:1793–1814.

66. Wright T. The physics and mathematics of adiabatic shear bands. Cambridge
(United Kingdom): Cambridge University Press; 2002.

67. Curran D, Seaman L, Cooper T, Shockey D. Micromechanical model for com-
minution and granular flow of brittle material under high strain rate application
to penetration of ceramic targets. International Journal of Impact Engineering.
1993;13:53–83.

68. Holder J, Granato A. Thermodynamic properties of solids containing defects.
Physical Review. 1969;182:729–741.

69. Clayton J, Bammann D. Finite deformations and internal forces in elastic-
plastic crystals: interpretations from nonlinear elasticity and anharmonic lattice
statics. Journal of Engineering Materials and Technology. 2009;131:041201.

70. Clayton J, Hartley C, McDowell D. The missing term in the decomposition of
finite deformation. International Journal of Plasticity. 2014;52:51–76.

71. Ogden R. Non-linear elastic deformations. Chichester (United Kingdom): El-
lis Horwood; 1984.

72. Clayton J. A non-linear model for elastic dielectric crystals with mobile va-
cancies. International Journal of Non-Linear Mechanics. 2009;44:675–688.

73. Clayton J. Modeling nonlinear electromechanical behavior of shocked silicon
carbide. Journal of Applied Physics. 2010;107:013520.

74. Ball J. Discontinuous equilibrium solutions and cavitation in nonlinear
elasticity. Philosophical Transactions of the Royal Society of London A.
1982;306:557–611.

75. Abeyaratne H, Hou H. On the occurrence of the cavitation instability relative
to the asymmetric instability under symmetry dead-loading conditions. Quar-
terly Journal of Mechanics and Applied Mathematics. 1991;44:429–449.

57



Approved for public release; distribution is unlimited.

76. Clayton J, McDowell D, Bammann D. A multiscale gradient theory for elasto-
viscoplasticity of single crystals. International Journal of Engineering Science.
2004;42:427–457.

77. Clayton J, McDowell D, Bammann D. Modeling dislocations and disclina-
tions with finite micropolar elastoplasticity. International Journal of Plasticity.
2006;22:210–256.

78. Clayton J, Chung P, Grinfeld M, Nothwang W. Kinematics, electromechanics,
and kinetics of dielectric and piezoelectric crystals with lattice defects. Inter-
national Journal of Engineering Science. 2008;46:10–30.

79. Clayton J, Knap J. Phase field modeling of twinning in indentation of trans-
parent single crystals. Modelling and Simulation in Materials Science and En-
gineering. 2011;19:085005.

80. Clayton J, Knap J. Phase field analysis of fracture induced twinning in single
crystals. Acta Materialia. 2013;61:5341–5353.

81. Clayton J, Knap J. Phase field modeling of coupled fracture and twinning in
single crystals and polycrystals. Computer Methods in Applied Mechanics and
Engineering. 2016;in press.

82. Clayton J. Towards a nonlinear elastic representation of finite compression and
instability of boron carbide ceramic. Philosophical Magazine. 2012;92:2860–
2893.

83. Clayton J. Phase field theory and analysis of pressure-shear induced amor-
phization and failure in boron carbide ceramic. AIMS Materials Science.
2014;1:143–158.

84. Clayton J. A continuum description of nonlinear elasticity, slip and twin-
ning, with application to sapphire. Proceedings of the Royal Society A.
2009;465:307–334.

85. Clayton J. Nonlinear Eulerian thermoelasticity for anisotropic crystals. Journal
of the Mechanics and Physics of Solids. 2013;61:1983–2014.

86. Clayton J. Analysis of shock compression of strong single crystals with loga-
rithmic thermoelastic-plastic theory. International Journal of Engineering Sci-
ence. 2014;79:1–20.

58



Approved for public release; distribution is unlimited.

87. Clayton J. Crystal thermoelasticity at extreme loading rates and pres-
sures: analysis of higher-order energy potentials. Extreme Mechanics Letters.
2015;3:113–122.

88. Levitas V, Levin V, Zingerman K, Freiman E. Displacive phase transitions
at large strains: phase-field theory and simulations. Physical Review Letters.
2009;103:025702.

89. Allen S, Cahn J. A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening. Acta Metallurgica. 1979;27:1085–
1095.

59



Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

60



Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO LL
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

1
(PDF)

CALIFORNIA INST TECHNOLOGY
K BHATTACHARYA

1
(PDF)

DREXEL UNIVERSITY
DEPT MATHEMATICS

P GRINFELD

1
(PDF)

GEORGIA INST TECHNOLOGY
D MCDOWELL

1
(PDF)

MISSISSIPPI STATE UNIVERSITY
CENTER ADVANCED VEHICULAR
SYSTEMS

D BAMMANN

1
(PDF)

NEW YORK UNIVERSITY
COURANT INST MATH SCI

R KOHN

61



Approved for public release; distribution is unlimited.

ABERDEEN PROVING GROUND

20
(PDF)

DIR USARL
RDRL CIH C

J KNAP
RDRL WM

B FORCH
S KARNA
J MCCAULEY
J ZABINSKI

RDRL WML B
B RICE

RDRL WMM B
G GAZONAS

RDRL WMP
S SCHOENFELD

RDRL WMP B
S SATAPATHY
M SCHEIDLER
A SOKOLOW

RDRL WMP C
R BECKER
T BJERKE
J CLAYTON
M GREENFIELD
R LEAVY
J LLOYD
S SEGLETES
A TONGE
C WILLIAMS

62


